Bagging与方差】的更多相关文章

在集成学习中,通常认为Bagging的主要作用是降低方差,而Boosting的主要作用是降低偏差.Boosting能降低偏差很好理解,因为其原理就是将多个弱学习器组合成强学习器.但Bagging为什么能降低方差?或者说,为什么将多个强学习器组合起来方差就会降低?这是本篇想要探讨的问题,而在这之前我认为有必要先搞清楚方差和偏差的基本概念. 方差 首先来看方差的定义:设X为随机变量,则方差\(Var(X) = E[(X-E[X])^2]\),表示X与平均值\(E[X]\)之间差异的平方的期望值,用于…
1.bagging减少variance Bagging对样本重采样,对每一重采样得到的子样本集训练一个模型,最后取平均.由于子样本集的相似性以及使用的是同种模型,因此各模型有近似相等的bias和variance(事实上,各模型的分布也近似相同,但不独立),所以bagging后的bias和单个子模型的接近,一般来说不能显著降低bias. 若各模型独立,则 若各模型完全相等,则 此时不会降低variance.bagging方法得到的各子模型是有一定相关性的,属于上面两个极端状况的中间态,因此可以一定…
[白话解析] 通俗解析集成学习之bagging,boosting & 随机森林 0x00 摘要 本文将尽量使用通俗易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来解释 集成学习.并且从名著中延伸了具体应用场景来帮助大家深入这个概念. 在机器学习过程中,会遇到很多晦涩的概念,相关数学公式很多,大家理解起来很有困难.遇到类似情况,我们应该多从直觉角度入手思考,用类比或者举例来附会,这样往往会有更好的效果. 我在讲解论述过程中给自己的要求是:在生活中或者名著中找一个例子,…
1.集成学习概述 集成学习算法可以说是现在最火爆的机器学习算法,参加过Kaggle比赛的同学应该都领略过集成算法的强大.集成算法本身不是一个单独的机器学习算法,而是通过将基于其他的机器学习算法构建多个学习器并集成到一起.集成算法可以分为同质集成和异质集成,同质集成是值集成算法中的个体学习器都是同一类型的学习器,比如都是决策树:异质集成是集成算法中的个体学习器由不同类型的学习器组成的.(目前比较流行的集成算法都是同质算法,而且基本都是基于决策树或者神经网络的) 集成算法是由多个弱学习器组成的算法,…
集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 集成学习之Boosting -- Gradient Boosting原理 集成学习之Boosting -- Gradient Boosting实现 上一篇介绍了AdaBoost算法,AdaBoost每一轮基学习器训练过后都会更新样本权重,再训练下一个学习器,最后将所有的基学习器加权组合.AdaBoost使用的是指数损失,这个损失函数的缺点是对于异常点非常敏感,(关于各种损失函数可见之前…
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合.本文就对集成学习中Bagging与随机森林算法做一个总结. 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力. 1.  bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图. 从上图可以看出,…
转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jackknife, bagging, boosting, random forest 都有介绍,以下是搜索得到的原文,没找到博客作者的地址, 在这里致谢作者的研究. 一并列出一些找到的介绍boosting算法的资源: (1)视频讲义,介绍boosting算法,主要介绍AdaBoosing    htt…
http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jackknife, bagging, boosting, random forest 都有介绍,以下是搜索得到的原文,没找到博客作者的地址, 在这里致谢作者的研究. 一并列出一些找到的介绍boosting算法的资源: (1)视频讲义,介绍boosting算法,主要介绍AdaBoosing    http:…
引自http://blog.csdn.net/xianlingmao/article/details/7712217 Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting 这些术语,我经常搞混淆,现在把它们放在一起,以示区别.(部分文字来自网络,由于是之前记的笔记,忘记来源了,特此向作者抱歉) Bootstraping: 名字来自成语“pull up by your own…
我们学过决策树.朴素贝叶斯.SVM.K近邻等分类器算法,他们各有优缺点:自然的,我们可以将这些分类器组合起来成为一个性能更好的分类器,这种组合结果被称为 集成方法 (ensemble method)或者 元算法 (meta-method).使用集成算法时有多种形式: 不同算法的集成 同一种算法在不同设置下的集成 数据集不同部分分配 给不同分类器之后的集成 1.bagging 和boosting综述 bagging 和boosting中使用的分类器类型都是一样的. bagging,也成为自举汇聚法…