首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[Codeforces438E][bzoj3625] 小朋友和二叉树 [多项式求逆+多项式开根]
】的更多相关文章
FFT模板 生成函数 原根 多项式求逆 多项式开根
FFT #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> #include<algorithm> #define maxn 1000005 using namespace std; inline int read() { ,f=;char ch=getchar(); ; +ch-'; return x*f; }…
【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根
首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$[x^n]F(x)=\sum_{i=0}^{n}[x^i]G(x)\sum_{j=0}^{n-i}[x^j]F(j)\times [x^{n-j-i}]F(n-j-i)$. (这个式子的意思就是说,不妨设当前根节点的权值为i,然后枚举左右两个子树的权值) 这个式子显然可以通过动规的方式去推,从而得出…
[Codeforces438E][bzoj3625] 小朋友和二叉树 [多项式求逆+多项式开根]
题面 传送门 思路 首先,我们把这个输入的点的生成函数搞出来: $C=\sum_{i=0}^{lim}s_ix^i$ 其中$lim$为集合里面出现过的最大的数,$s_i$表示大小为$i$的数是否出现过 我们再设另外一个函数$F$,定义$F_k$表示总权值为$k$的二叉树个数 那么,一个二叉树显然可以通过两个子树(可以权值为0,也就是空子树)和一个节点构成 那么有如下求$F$的式子 $F_0=1$ $F_k=\sum_{i=0}^k s_i \sum_{j=0}^{k-i} F_j F_{k-i-…
2019.01.01 bzoj3625:小朋友和二叉树(生成函数+多项式求逆+多项式开方)
传送门 codeforces传送门codeforces传送门codeforces传送门 生成函数好题. 卡场差评至今未过 题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: Expected 'EOF', got '\inC' at position 4: v_i\̲i̲n̲C̲=\{a_1,a_2,...a-,定义一棵树的权值为所有点的权值之和,问有多少棵树满足其权值等于i(i=1,2,...,m)i(i=1,2,...,m)i(i=1,2,...,m) 对每个点的…
bzoj 3625小朋友和二叉树 多项式求逆+多项式开根 好题
题目大意 给定n种权值 给定m \(F_i表示权值和为i的二叉树个数\) 求\(F_1,F_2...F_m\) 分析 安利博客 \(F_d=F_L*F_R*C_{mid},L+mid+R=d\) \(F(x)=\frac {1+\sqrt{1-4C(x)}}{2C(x)}=\frac 2{1-\sqrt{1-4C(x)}}\) 无解是因为\(x=0\)时\(F(x)=1\) 但是\(\lim\limits_{x\rightarrow 0}\)时\(1-\sqrt{1-4C(x)}趋于0\) \(…
NTT+多项式求逆+多项式开方(BZOJ3625)
定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\frac{2}{\sqrt{1-4h(x)}+1}$ 于是我们需要多项式开方和多项式求逆. 多项式求逆: 求$B(x)$,使得$A(x)*B(x)=1\;(mod\;x^m)$ 考虑倍增. 假设我们已知$A(x)*B(x)=1\;(mod\;x^m)$,要求$C(x)$,使得$A(x)*C(x)=1\;…
【learning】多项式相关(求逆、开根、除法、取模)
(首先要%miskcoo,这位dalao写的博客(这里)实在是太强啦qwq大部分多项式相关的知识都是从这位dalao博客里面学的,下面这篇东西是自己对其博客学习后的一些总结和想法,大部分是按照其博客里面的思路来分析的,并添加了一些自己的理解) 多项式求逆(元) 定义 对于一个多项式\(A(x)\),如果存在一个多项式\(B(x)\),满足\(B(x)\)的次数小于等于\(A(x)\)且\(A(x)B(x)\equiv 1(mod\ x^n)\),那么我们称\(B(x)\)为\(A(x)\)在模\…
【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\frac{i(i-1)}{2}} \] \[ \begin{align} g_i&=f_i-\sum_{j=1}^{i-1}\binom{n-1}{j-1}g_jf_{i-j}\\ &=f_i-(i-1)!\sum_{j=1}^{i-1}\frac{g_j}{(j-1)!}\frac{f_{i-…
bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方案数 == 随便连方案数 - 不连通方案数 不连通方案数就和很久之前做过的“地震后的幻想乡”一样,枚举一个连通的点集,其中需要一直包含一个“划分点”保证不重复:其余部分随便连.注意还有从 i 个点里选 j 个点作为连通点集的那个组合数. \( dp[i]=2^{C^{2}_{i}} - \sum\l…
P6295-有标号 DAG 计数【多项式求逆,多项式ln】
正题 题目链接:https://www.luogu.com.cn/problem/P6295 题目大意 求所有\(n\)个点的弱联通\(DAG\)数量. \(1\leq n\leq 10^5\) 解题思路 先不考虑弱联通的限制,求\(n\)个点的\(DAG\)数量. 设为\(f_i\),那么有式子 \[f_n=\sum_{i=1}^{n}\binom{n}{i}2^{i(n-i)}f_{n-i}(-1)^{i+1} \] 这个式子的意思是说新建一层出度为\(0\)的点,\(\binom{n}{i…
BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根
生成函数又有奇妙的性质. $F(x)=C(x)*F(x)*F(x)+1$ 然后大力解方程,得到一个带根号的式子. 多项式开根有解只与常数项有关. 发现两个解只有一个是成立的. 然后多项式开根.求逆. 不太会算复杂度为什么是$n\log {n}$的. 开根号里套了一个求逆,不应该是两个$\log$? #include <map> #include <cmath> #include <queue> #include <cstdio> #include <c…
[BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)
城市规划 时间限制:40s 空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一样, 那么这两个方案就是不同的, 否则就是相同的. 现在你需要求出一共有多少不同的方案. 好了, 这就…
luoguP4512 【模板】多项式除法 NTT+多项式求逆+多项式除法
Code: #include<bits/stdc++.h> #define maxn 300000 #define ll long long #define MOD 998244353 #define setIO(s) freopen(s".in","r",stdin) ,freopen(s".out","w",stdout) using namespace std; namespace poly{ #define…
BZOJ 3625 多项式求逆+多项式开根
思路: RT //By SiriusRen #include <bits/stdc++.h> using namespace std; <<,mod=; int A[N],C[N],invC[N],c[N],d[N],R[N],tmp[N],xx,len,sqrA[N],F[N]; typedef long long ll; int power(ll x,int y){ ll res=; while(y){ )res=res*x%mod; x=x*x%mod,y>>=;…
【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆
题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\}\)中,我们的小朋友就会将其称作神犇的.并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和. 给出一个整数\(m\),你能对于任意的\(s(1\leq s\leq m)\)计算出权值为\(s\)的神犇二叉树的个数吗? 我们只需要知道答案关于\(998244353\)取模后的值. \(n,m\…
【BZOJ3625/CF438E】小朋友和二叉树(多项式求逆,多项式开方)
[BZOJ3625/CF438E]小朋友和二叉树(多项式求逆,多项式开方) 题面 BZOJ CodeForces 大致题意: 对于每个数出现的次数对应的多项式\(A(x)\) 求\[f(x)=\frac{2}{\sqrt{-4A(x)+1}+1}\] 题解 多项式开方+多项式求逆模板题 我之前写的多项式求逆很丑,常数大的惊人 成功拿到洛谷模板题倒数第一的速度 于是,我学习了一波Gay神的写法 写了一下这道题目 具体的细节暂时不写了,以后肯定有机会的写的(这点我可以保证) #include<ios…
[BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)
[BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权值为i的二叉树的个数. 两棵树不同当且仅当树的形态不一样或者是树的某个点的点权不一样 分析 设\(c(i)\)表示数值i是否在集合中.\(f(i)\)表示权值为i的二叉树的个数.那么 \[f(n)=\sum_{i=1}^n c(i) \sum_{j=0}^{n-i} f(j)f(n-i-j)\] 其…
【XSY2612】Comb Avoiding Trees 生成函数 多项式求逆 矩阵快速幂
题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 把一棵子树替换成根的的左子树或右子树. 定义\(k\)连树为一棵只有恰好\(k\)个叶子的满二叉树,如果某个节点有一个右孩子,那么这个右孩子一定是一个叶子. 对于给定的\(k\)和\(n\),对于所有在\(1\)到\(n\)之间的\(i\),你需要求出所有叶子节点恰好为\(i\),且不包含\(k\…
CF438E The Child and Binary Tree(生成函数+多项式开根+多项式求逆)
传送门 可以……这很多项式开根模板……而且也完全不知道大佬们怎么把这题的式子推出来的…… 首先,这题需要多项式开根和多项式求逆.多项式求逆看这里->这里,这里讲一讲多项式开根 多项式开方:已知多项式$B$,求多项式$A$满足$A^2\equiv B\pmod{x^n}$(和多项式求逆一样这里需要取模,否则$A$可能会有无数项) 假设我们已经求出$A'^2\equiv B\pmod{x^n}$,考虑如何计算出$A^2\equiv B\pmod{x^{2n}}$ 首先肯定存在$A^2\equiv B…
hdu 5730 Shell Necklace [分治fft | 多项式求逆]
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治fft 注意过程中把r-l+1当做次数界就可以了,因为其中一个向量是[l,mid],我们只需要[mid+1,r]的结果. 多项式求逆 变成了 \[ A(x) = \frac{f_0}{1-B(x)} \] 的形式 要用拆系数fft,直接把之前的代码复制上就可以啦 #include <iostream…
BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 用斯特林数容斥原理推导那个式子可以直接出卷积形式,见下一篇,本篇是分治fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 Bell数 \(B(n)=\sum\limits_{i=…
Re.多项式求逆
前言 emmm暂无 多项式求逆目的 顾名思义 就是求出一个多项式的摸xn时的逆 给定一个多项式F(x),请求出一个多项式G(x),满足F(x)∗G(x)≡1(modxn),系数对998244353取模. 多项式求逆主要思路 我们考虑用递推的做法 假设我们当前已知F(x)H(x)=1(mod xi/2) 要求的是F(x)Q(x)=1(mod xi) 因为F(x)Q(x)=1(mod xi) 所以F(x)Q(x)=1(mod xi/2) 可得F(x)(Q(x)-H(x))=0(mod xi/2) 显…
BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)
题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减去不可行的方案数就行了 (容斥) 令 \(f_i\) 为有 \(i\) 个点的无向有标号连通图个数 . 考虑 \(1\) 号点的联通块大小 , 联通块外的点之间边任意 但 不能与 \(1\) 有间接联系 . 那么就有 \[\displaystyle f_i = 2^{\binom i 2} - \s…
洛谷P4841 城市规划(生成函数 多项式求逆)
题意 链接 Sol Orz yyb 一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到... 正解是先设\(g(n)\)表示\(n\)个点的无向图个数,这个方案是\(2^{\frac{i(i-1)}{2}}\)(也就是考虑每条边选不选) 考虑如何得到\(g\) \[g(n) = \sum_{i=0}^n C_{n-1}^{i-1}f(i) g(n-i)\] 直接将\(2^{\frac{n(n-1)}{2}}\)带入然后化简一下可以得…
LOJ2527 HAOI2018 染色 容斥、生成函数、多项式求逆
传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制\(j\)种颜色恰好出现\(S\)次,其他颜色随意染的方案数.可以通过生成函数知道 \(\begin{align*} c_j &= \binom{m}{j} n! [x^n] (\frac{x^k}{k!})^j (\sum\limits_{i=0}^\infty \frac{x^i}{i!})^{m…
【bzoj3456】城市规划(多项式求逆+dp)
Description 求\(~n~\)个点组成的有标号无向连通图的个数.\(~1 \leq n \leq 13 \times 10 ^ 4~\). Solution 这道题的弱化版是poj1737, 其中\(n \leq 50\), 先来解决这个弱化版的题.考虑\(~dp~\),直接统计答案难以入手,于是考虑容斥.显然有,符合条件的方案数\(=\)所有方案数\(-\)不符合条件的方案数,而这个不符合条件的方案数就是图没有完全联通的情况.设\(~dp_i~\)表示\(~i~\)个点组成的合法方案…
[模板][P4238]多项式求逆
NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <cstdlib> #include <iostream> #include <algorithm> #…
BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)
第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以及需要敲一发类似任意模数ntt的东西来避免爆精度.成功以这种做法拿下luogu倒数rank1,至于bzoj不指望能过了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib>…
CF848E Days of Floral Colours——DP+多项式求逆/分治NTT
官方题解:http://codeforces.com/blog/entry/54233 就是由简入繁 1.序列处理,只考虑一个半圆 2.环形处理(其实这个就是多了旋转同构) 然后基于分割线邻居的跨越与否,分类讨论 g->没有分割线方案数(其实也可以变成贡献,但是太简单,之后乘上(i+0/1/2)也方便) f0->有分割线,两边都没有选所有情况的贡献的和 f1->有分割线,两边选择了一个所有情况的贡献的和 f2->有分割线,两边都选择了所有情况的贡献的和 最后对于环 考虑除了中间割线…
P4238 【模板】多项式求逆
思路 多项式求逆就是对于一个多项式\(A(x)\),求一个多项式\(B(x)\),使得\(A(x)B(x) \equiv 1 \ (mod x^n)\) 假设现在多项式只有一项,显然\(B(x)\)的第0项(常数项)就是\(A(x)\)的第0项(常数项)的逆元(所以\(A(x)\)有没有逆元取决于\(A(x)\)的常数项有没有逆元) 那我们可以利用递归的方法, 现在要求 \[ A(x)B(x) \equiv 1 (mod\ x^n) \] 假设有多项式\(B'(x)\),满足 \[ A(x)B'…