原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ201.html 题解 首先把题目里面的提示抄过来: 结论:假设带权无向图 G 有 100 个节点 1000 条边,且所有权值各不相同.那么,G 中一定存在一个单调上升路径,它的长度大于等于 20. 证明:假设每个节点上有一个探险家.我们按权值从小到大枚举所有的边,每次将该边连接的节点中的探险家的位置进行对调.可以知道,每个探险家都走的是一条单调上升路径.另外,由于共有 100 个探险家,而探险家一共走了…
题目:UOJ#201. 题目大意:给定n个点(n是偶数)的完全图,现在要你给每条边确定一个权值(互不相等),使得最长的单调上升路径最短.现在要你输出边的权值. 一条路径被称为单调上升的,如果沿着它走时的权值是单调递增的. 解题思路:题目中的证明告诉我们一个结论:单调上升路径至少为n-1. 所以我们要让这个单调上升路径长度为n-1. 一张n个点的完全图可以拆成n-1个互不相等的,每个点的度数都为1的子图.例如 而每个这样的子图都走一条边,则刚好n-1. 那么我们对这样的一张子图,使它的所有边权值连…
「CTSC2016」单调上升路径 解题思路:根据提示可以得到答案的下界是 \(n - 1\) ,然后打表发现这个下界好像一定可以取到. 事实上考虑 \(n\) 个点完全图的边数是 \(\frac{n(n-1)}{2}\), 如果 \(n\) 是偶数,那么可以把边成 \(n-1\) 组,每一组 \(\frac{n}{2}\) 条边,并且每组的边都不在端点相交,如果从小到大安排上边权,显然每一组只能走一条边,答案是 \(n-1\) . 构造不在端点相交可以单独拿出一个点 \(x\) 放在中间,其他点…
[「CTSC 2011」幸福路径 蚂蚁是可以无限走下去的,但是题目对于精度是有限定的,只要满足精度就行了. \({(1-1e-6)}^{2^{25}}=2.6e-15\) 考虑使用倍增的思想. 定义\(dp[x][y][t]\)为从\(x\)点出发,走\(2^t\)步,到达\(y\)所得到的最大权值. dp转移:\(dp[x][y][t]=max(dp[x][k][t-1]+p^{2^{t-1}} dp[k][y][t-1])\)(\(k \subset [1,n]\)). 一次转移复杂度为\(…
http://uoj.ac/problem/201 别人都一眼秒的题对我而言怎么那么难qwq 这道题就是要构造一个n*n的邻接矩阵,满足矩阵\(A\)是一个拉丁方阵(也是数独?),\(a_{ij}=a_{ji}\),并且\(i,j\in\{1,2\dots n\},a_{ii}=a_{jj}\). 我乱画了一下,找到了一个比较有规律且满足条件的矩阵. 这是n=10的情况: 规律很显然吧qwq #include<cstdio> #include<cstring> #include&l…
http://uoj.ac/problem/198 (先补一下以前的题解) 这道题5分暴力好写好调,链上部分分可以用可持久化线段树,每次旅行\(x\)值相同的可以用标记永久化线段树.我还听到某些神犇说可以用KD-Treebalabalabala. 很显然\(y,z\)坐标都没用.然后... 在一个时空中,对于固定的\(x_0\),要求最小的\(ans=c_i+(x_i-x_0)^2\),拆开可以得到\(ans-x_0^2=(c_i+x_i^2)-2x_ix_0\),这样只需要求\(min_i\{…
我第一次写游记,,,, 正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪里?正文在哪…
由于题目的证明可以发现$ans\ge 2m/n \ge n-1$,于是大胆猜测答案就是n-1若n是奇数,则将边分为n组,每组(n-1)/2,如果同组内边没有交点,那么只需要每一组边一个权值区间,从每一组边一定不可能走回那组边(因为会经过其他组的边),所以答案至多n-1若n是偶数,先对n-1的图边分类,最后可以发现每一组边都还剩下一个点,和n相连即可具体分组方法:如果将n个点排成一条线,初始2-n,3-(n-1)--然后不断平移+循环即可 1 #include<bits/stdc++.h> 2…
写了一天啊,调了好久,对拍了无数次都拍不出错来(数据生成器太弱了没办法啊). 错误1:把线性基存成结构体,并作为函数计算,最后赋值给调用函数的变量时无疑加大了计算量导致TLE 错误2:像这种函数(A,B,C)功能是实现C=A+B,而要计算A=A+B时千万不能(A,B,A)这么用QAQ,它不会存储A之前的值用来计算新的A的值啊,因为这个出现了许多奇奇怪怪的错误ovo 错误3:错误答案,调起来非常令人崩溃,从Tyrant那里要了SCOI的数据后查错,面对一大堆数字怎么可能查出错来.只好静态查错,呆看…
http://uoj.ac/problem/209 单调栈求出每个位置x左边第一个大于它的位置L[x]和右第一个不小于它的位置R[x],于是矩形L[x]<=l<=x<=r<=R[x]内的点(l,r)对应的区间[l,r]的最值为x位置的值,这个矩形内的点只对答案数组的二阶差分的四个位置有影响,可以全部统计后再求两次前缀和得到答案. #include<bits/stdc++.h> typedef long long i64; ,P=; ],*ip=ib; int _(){…