Description 传送门 Solution 题目要求的是曼达顿距离,对于每个点(x,y),我们把它变为(x-y,x+y),就可以转换成求切比雪夫距离了. 证明如下:$max(\left | (x_{p}-y_{p})-(x_{q}-y_{q}) \right |,\left | (x_{p}+y_{p})-(x_{q}+y_{q}) \right |)=max(\left | x_{p}-x_{q}\pm(y_{p}-y_{q}) \right | )=\left | x_{p}-x_{q…
3170: [Tjoi 2013]松鼠聚会 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1318  Solved: 664[Submit][Status][Discuss] Description 有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最短距离. Input 第一行给出数字N,表示有多少只小松鼠.0<=N<=1…
[BZOJ 2989]数列(CDQ 分治) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[y]|. 2种操作(k都是正整数): 1.Modify x k:将第x个数的值修改为k. 2.Query x k:询问有几个i满足graze(x,i)<=k.因为可持久化数据结构的流行,询问仅要考虑当前数列,还要考虑任意历史版本,即统计任意位置上出现过的任意数值与当前的a[x]的graze值<=k的对数…
题意 从 $n$ 个点中选择一点,使得其他点到其的切比雪夫距离最小($0 < n \leq 1e5$). 分析 定理:$(x_1, y_1)$ 与 $(x_2, y_2)$ 的曼哈顿距离等于 $(x_1-y_1, x_1+y_1)$ 与 $(x_2-y_2, x_2+y_2)$ 的切比雪夫距离. 转换成曼哈顿距离中的坐标,求曼哈顿距离. 由于这个点必须是 $n$ 个点中的一点,所以 $x,y$ 还有限制关系(不然直接排序取中点就完事了). 我们对分别对 $x,y$ 排序并求出前缀和, 然后枚举这…
题目: http://acm.hdu.edu.cn/showproblem.php?pid=4312 Meeting point-2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1231    Accepted Submission(s): 691 Problem Description It has been ten years s…
题意 有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最短距离. 思路 题目中的距离是切比雪夫距离,而切比雪夫距离与曼哈顿距离可以互相转化. 考虑二维笛卡尔坐标系的坐标原点\(O(0,0)\),与它的切比雪夫距离为1的点的集合形成的图形是一个边长为2的正方形,与它的曼哈顿距离为1的点的集合形成的图形是一个边长为1的正方形,如果把这个边长为2的正方形旋转45度再缩小2倍,两个…
题目链接 将原坐标系每个点的坐标\((x,y)\)变为\((x+y,x-y)\),则原坐标系中的曼哈顿距离等于新坐标系中的切比雪夫距离. 反过来,将原坐标系每个点的坐标\((x,y)\)变为\((\frac{x+y}{2},\frac{x-y}{2})\),则原坐标系中的切比雪夫距离等于新坐标系中的曼哈顿距离. 随便写两个点就可以验证这是对的. 将题目中每个点的坐标\((x,y)\)改为\((\frac{x+y}{2},\frac{x-y}{2})\),然后记\(dis(a,b)=\Delta…
http://acm.hdu.edu.cn/showproblem.php?pid=4312 题意:在上一题的基础上,由四个方向改为了八个方向. 思路: 引用自http://blog.csdn.net/bigbigship/article/details/43163719. 切比雪夫距离:设a(x1,y1),b(x2,y2);DIS = max(|x1-x2|,|y1-y2|) = (|x1-x2+y1-y2|+|x1-x2-y1+y2|)/2; 我们将点aa的坐标看成(x1+y1,x1-y1)…
因为曼哈顿距离很好求,所以要把每个点的坐标转换一下. 转自:http://blog.csdn.net/slongle_amazing/article/details/50911504 题解 两个点的切比雪夫距离为d=max(|x1−x2|,|y1−y2|)   写一下曼哈顿距离的常用处理方法 两个点(x1,y2),(x2,y2) 其曼哈顿距离=|x1−x2|+|y1−y2| 因为|x1−x2|=max(x1−x2,x2−x1) 所以可以写成=max(x1−x2+y1−y2,x1−x2+y2−y1…
曼哈顿距离: 是由十九世纪的赫尔曼·闵可夫斯基所创词汇 ,是种使用在几何度量空间的几何学用语,用以标明两个点在标准坐标系上的绝对轴距总和. 曼哈顿距离——两点在南北方向上的距离加上在东西方向上的距离,即d(i,j)=|xi-xj|+|yi-yj|. 对于一个具有正南正北.正东正西方向规则布局的城镇街道,从一点到达另一点的距离正是在南北方向上旅行的距离加上在东西方向上旅行的距离,因此,曼哈顿距离又称为出租车距离. 欧几里得距离: 欧几里得度量(euclidean metric)(也称欧氏距离)是一…