luogu P2553 [AHOI2001]多项式乘法】的更多相关文章

传送门 这题就是普及暴力模拟板子FFT板子,只要把多项式读入进来FFT一下就好了(不会的右转P3803) 重点是读入,我本以为这个字符串里到处都有空格,这里提供一种简单思路: 因为里面可能有空格,所以用while和scanf读入连续的一段字符,如果读到数字就把这个系数(以及可能有的a的次数)抠出来,放在对应的多项式里 如果读到),如果这是第奇数个,那么后面的系数放到第二个多项式里,否则进行FFT并输出,并且让后面的系数放到第一个多项式里 注意多组数据要清空某些变量,数组 #include<bit…
题目链接 简单处理一下输入,\(fft\)模板题. #include <cstdio> #include <cmath> #include <algorithm> #include <cstring> #define re register using namespace std; const int MAXN = 1000010; const double PI = M_PI; struct complex{ double x, y; complex(do…
\([Link](https://www.luogu.org/problemnew/show/P2553)\) \(\color{red}{\mathcal{Description}}\) 给出两个多项式的乘积表达式,请求出它的结果. 啥?乘积表达式?哦,就是酱紫的: \((4a^3 + 6a^2 + a ^ 1 + 3) * (3a^2 + a ^ 1 + 2)\) 嗯,那么它的结果也要写成这样\(qwq\)但是在这里就不举例子了\(qwq\) \(\color{red}{\mathcal{S…
[模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A(x)=a_1x^k+a_2x^{k-1}+...+a_k\) 或者可以这样表示: \(A(x)=\sum\limits_{i=1}^{k}a_i\times x_i\) 那你很容易看到,用来做这道题用系数表示法来做是 \(O(n^2)\) 的. 点值表示法 假设我们已经知道了这个多项式,那我们把…
FFT求卷积(多项式乘法) 卷积 如果有两个无限序列a和b,那么它们卷积的结果是:\(y_n=\sum_{i=-\infty}^\infty a_ib_{n-i}\).如果a和b是有限序列,a最低的项为a0,最高的项为an,b同理,我们可以把a和b超出范围的项都设置成0.那么可以得出:y0=a0b0,y1=a1b0+a0b1,y2=a0b2+a1b1+a2b0--,y(n+m)=a(n)b(m). 构造两个多项式A(x)和B(x): \(A=a_0+a_1x+a_2x^2+...+a_{n-1}…
具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DFT(v_2)$.这里得到的 $f_1$ 和 $f_2$ 分别是两个输入多项式在 $2n$ 次单位根处的各个取值(即点值表示) 3.乘法:把两个向量 $f_1$ 和 $f_2$ 的每一维对应相乘,得到向量 $f$.它对应输入多项式乘积的点值表示. 4.插值:用FFT计算 $v=IDFT(f)$,其实…
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多项式的 0 到 n 次项前的系数. 第三行 m+1 个整数,分别表示第一个多项式的 0 到 m 次项前的系数. 输出 一行 n+m+1 个整数,分别表示乘起来后的多项式的 0 到 n+m 次项前的系数. 输入示例 输出示例 数据规模及约定 0≤n,m≤105,保证输入中的系数大于等于 0 且小于等于…
卷积 给定向量:, 向量和: 数量积(内积.点积): 卷积:,其中 例如: 卷积的最典型的应用就是多项式乘法(多项式乘法就是求卷积).以下就用多项式乘法来描述.举例卷积与DFT. 关于多项式 对于多项式,系数为,设最高非零系数为,则其次数就是,记作.任何大于的整数都是的次数界. 多项式的系数表达方式:(次数界为). 则多项式的系数向量即为. 多项式的点值表达方式:,其中各不相同,. 离散傅里叶变换(DFT) 离散傅里叶变换(Discrete Fourier Transform,DFT).在信号处…
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.net/leo_h1104/article/details/51615710 题解 不写点什么也不好,我就简单的说一下吧. 我们首先得知道DFT(离散傅里叶变换)和IDFT(逆离散傅里叶变换). 一个多项式有很两种表示方法: 法一:\(f(x)=\sum_{i=0}^n A_i*x^i\) 法二:图像…
[Uoj34]多项式乘法(NTT,FFT) 题面 uoj 题解 首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西 直接贴一下代码吧.. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<set> #include<map&g…