聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不同类型,通常有以下几种: (1)层次的与划分的:如果允许簇具有子簇,则我们得到一个层次聚类.层次聚类是嵌套簇的集族,组织成一棵树.划分聚类简单地将数据对象划分成不重叠的子集(簇),使得每个数据对象恰在一个子集中. (2)互斥的.重叠的与模糊的:互斥的指每个对象都指派到单个簇.重叠的或是模糊聚类用来反…
聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不同类型,通常有以下几种: (1)层次的与划分的:如果允许簇具有子簇,则我们得到一个层次聚类.层次聚类是嵌套簇的集族,组织成一棵树.划分聚类简单地将数据对象划分成不重叠的子集(簇),使得每个数据对象恰在一个子集中. (2)互斥的.重叠的与模糊的:互斥的指每个对象都指派到单个簇.重叠的或是模糊聚类用来反…
K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467.87,1141.82,478.42,457.64TianJin,2459.77,495.47,697.33,302.87,284.19,735.97,570.84,305.08HeBei,1495.63,515.90,362.37,285.32,272.95,540.58,364.91,188.63…
wide&deep在个性化排序算法中是影响力比较大的工作了.wide部分是手动特征交叉(负责memorization),deep部分利用mlp来实现高阶特征交叉(负责generalization),wide部分和deep部分joint train. Deep&Cross Network模型我们下面将简称DCN模型,对比Wide & Deep ,不需要特征工程来获得高阶的交叉特征.对比 FM 系列的模型,DCN 拥有更高的计算效率并且能够提取到更高阶的交叉特征. 一个DCN模型从嵌入…
K-means 原理 首先随机选择k个初始点作为质心 1. 对每一个样本点,计算得到距离其最近的质心,将其类别标记为该质心对应的类别 2. 使用归类好的样本点,重新计算K个类别的质心 3. 重复上述过程,直到质心不发生变化 距离计算方法 在K-Means算法中,需要注意的是,对于距离的计算有很多中方法: (1)闵可夫斯基距离( Minkowski ) \[d(x,y) = (\sum_{i=1}^n|x_i-y_i|^p)^{\frac{1}{p}} \] 注意这里p=2时则为常用的欧氏距离.…
第一部分: 学习Mahout必需要知道的资料查找技能: 学会查官方帮助文档: 解压用于安装文件(mahout-distribution-0.6.tar.gz),找到例如以下位置.我将该文件解压到win7的G盘mahout目录下,路径例如以下所看到的: G:\mahout\mahout-distribution-0.6\docs 学会查源码的凝视文档: 方案一:用maven创建一个mahout的开发环境(我用的是win7,eclipse作为集成开发环境,之后在Maven Dependencies中…
考虑到学习知识的顺序及效率问题,所以后续的几种聚类方法不再详细讲解原理,也不再写python实现的源代码,只介绍下算法的基本思路,使大家对每种算法有个直观的印象,从而可以更好的理解函数中参数的意义及作用,而重点是放在如何使用及使用的场景. (题外话: 今天看到一篇博文:刚接触机器学习这一个月我都做了什么?  里面对机器学习阶段的划分很不错,就目前而言我们只要做到前两阶段即可) 因为前两篇博客已经介绍了两种算法,所以这里的算法编号从3开始. 3.Mean-shift 1)概述 Mean-shift…
实战部分主要针对某一具体算法对其原理进行较为详细的介绍,然后进行简单地实现(可能对算法性能考虑欠缺),这一部分主要介绍一些常见的一些聚类算法. K-means聚类算法 0.聚类算法算法简介 聚类算法算是机器学习中最为常见的一类算法,在无监督学习中,可以说聚类算法有着举足轻重的地位. 提到无监督学习,不同于前面介绍的有监督学习,无监督学习的数据没有对应的数据标签,我们只能从输入X中去进行一些知识发现或者预处理. 过去在有监督学习中,我们(让机器)通过X去预测Y,而到了无监督学习中,我们(让机器)只…
这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means)是一种基于中心的聚类算法,通过迭代,将样本分到K个类中,使得每个样本与其所属类的中心或均值的距离之和最小. 1.定义损失函数 假设我们有一个数据集{x1, x2,..., xN},每个样本的特征维度是m维,我们的目标是将数据集划分为K个类别.假定K的值已经给定,那么第k个类别的中心定义为μk,k=1…
密度峰值聚类算法(DPC) 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 简介 基于密度峰值的聚类算法全称为基于快速搜索和发现密度峰值的聚类算法(clustering by fast search and find of density peaks, DPC).它是2014年在Science上提出的聚类算法,该算法能够自动地发现簇中心,实现任意形状数据的高效聚类. 该算法基于两个基本假设:1)簇中心(密度峰值点)的局部密度大于围绕它的邻居的局部密…