1.下载安装Keras 如果你是安装的Anaconda组合套件,可以直接在Prompt上执行安装命令:pip install keras 注意:最下面为Successfully...表示安装成功! 2.简介 Keras为图片数据输入提供了一个很好的接口,即Keras.preprocessing.image.ImageDataGenerator类,该类生成一个数据生成器Generator对象,依照循环批量生成对应于图像信息的多维矩阵.根据后台运行环境的不同(例如:TensorFlow,Theano…
一.前言 由于前一段时间以及实现了基于keras深度学习框架下yolov3的算法,本来想趁着余热将自己的心得体会进行总结,但由于前几天有点事就没有完成计划,现在趁午休时间整理一下. 二.Keras框架的介绍 1.Keras是一个用Python编写的高级API,它提供了一个简单和模块化的API来创建和训练神经网络,同时也隐藏了大部分复杂的细节.其能够在TensorFlow.Theano或CNTK上运行. 2.keras的模型结构 常用模型有:序贯模型(Sequential)和函数式模型(Model…
近期在学习深度学习,需要在本机上安装keras框架,好上手.上网查了一些资料,弄了几天今天终于完全搞好了.本次是使用GPU进行加速,使用cpu处理的请查看之前的随笔keras在win7下环境搭建 本机配置:win7 64位的,4G内存,gtx970显卡 安装条件: vs2010(不一定非要是vs2010,恰好我有vs2010,应该是配置GPU编程时需要用到vs的编译器) cuda如果系统是64位的就下载64位,至于cuda的版本,有的说要和对应的显卡版本匹配,我就安装了8.0,实验来看,cuda…
一.损失函数的使用 损失函数[也称目标函数或优化评分函数]是编译模型时所需的两个参数之一. model.compile(loss='mean_squared_error', optimizer='sgd') 或 from keras import losses model.compile(loss=losses.mean_squared_error, optimizer='sgd') 可以传递一个现有的损失函数名或者一个TensorFlow/Theano符号函数.该符号函数为每个数据点返回一个标…
一.Tensorflow计算模型:计算图 计算图是Tensorflow中最基本的一个概念,Tensorflow中的所有计算都被被转化为计算图上的节点. Tensorflow是一个通过计算图的形式来描述计算的编程系统.Tensor指张量(多维数组:表明了它的数据结构),Flow指计算图(直观地表达了张量之间通过计算相互转化的过程).Tensorflow中的每一个计算都是计算图上的一个节点,而节点之间的边描述了计算之间的依赖关系. 为了建模方便,tf将常量转化成一种永远输出固定值的运算. Tenso…
目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使用 3.会话 4.TensorFlow实现神经网络 I. 前向传播算法 II. 神经网络参数与TensorFlow变量 III. 用TF训练神经网络 四.深层神经网络 1. 深度学习与深度神经网络 I. 线性模型的局限性 II. Activation去线性化 III. 多层网络解决异或运算 2. L…
对于许多科学家.工程师和开发人员来说,TensorFlow是他们的第一个深度学习框架.TensorFlow 1.0于2017年2月发布,可以说,它对用户不太友好. 在过去的几年里,两个主要的深度学习库Keras和Pytorch获得了大量关注,主要是因为它们的使用比较简单. 本文将介绍Keras与Pytorch的4个不同点以及为什么选择其中一个库的原因. Keras Keras本身并不是一个框架,而是一个位于其他深度学习框架之上的高级API.目前它支持TensorFlow.Theano和CNTK.…
TheanoTheano在深度学习框架中是祖师级的存在.Theano基于Python语言开发的,是一个擅长处理多维数组的库,这一点和numpy很像.当与其他深度学习库结合起来,它十分适合数据探索.它为执行深度学习中大规模神经网络算法的运算所设计.其实,它可以被更好的理解为一个数学表达式的编辑器:用符号式语言定义你想要的结果,该框架会对你的程序进行编译,来高效运行于GPU或CPU.它与后来出现的TensorFlow功能十分相似,因而两者常常被放在一起比较.它们本身都偏底层,同样的,Theano 像…
深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最新的版本 BLAS via ATLAS, MKL, or OpenBLAS. Boost >= 1.55 protobuf, glog, gflags, hdf5 可选依赖软件包: OpenCV >= 2.4 including 3.0 IO libraries: lmdb, leveldb (n…
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜.在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准.本文节选自<TensorFlow实战>第二章. 主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源…