spark延迟调度与动态资源管理】的更多相关文章

Spark中的延迟调度 Spark的Task的调度过程有五个本地性级别:PROCESS_NODE.NODE_LOCAL.NO_PREF.RACK_LOCAL.ANY.在理想的状态下,我们肯定是想所有的Task的调度都是PROCESS_NODE级别的,这样的话所有的Task都是在数据所在的机器上进行计算,这样的计算效率是最好的.但是实际的情况并不是这样的,因为Spark在Task的调度过程会发生如下两种情况: 1.数据所在的机器上的Executor没有空闲的cpu资源 2.含有空闲cpu资源的Ex…
Spark Job调度 1.概览 Spark有几种用于在计算之间调度资源的工具.首先,回想一下,如集群模式概述中所述,每个Spark应用程序(SparkContext的实例)都运行一组独立的executor进程.Spark运行的集群管理器提供了跨应用程序的调度工具.其次, 在每个Spark应用程序中,如果多个"job"(每个Spark action都是一个job)由不同的线程提交,则它们可以同时运行.如果您的应用程序通过网络提供请求,则这很常见.Spark包含一个公平的调度程序来调度每…
作业调度简介 设计者将资源进行不同粒度的抽象建模,然后将资源统一放入调度器,通过一定的算法进行调度,最终要达到高吞吐或者低访问延时的目的. Spark在各种运行模式中各个角色实现的功能基本一致,只不过是在特定的资源管理器下使用略微不同的名称和调度机制. Application调度 一个Application中包含多个Job,每个Job包含多个Stage,每个Stage包含多个Task,那么Application之间如何调度?多个Job之间如何调度?多个Stage之间如何调度?Task之间延时调度…
前提 最近的新项目和数据同步相关,有定时调度的需求.之前一直有使用过Quartz.XXL-Job.Easy Scheduler等调度框架,后来越发觉得这些框架太重量级了,于是想到了Spring内置的Scheduling模块.而原生的Scheduling模块只是内存态的调度模块,不支持任务的持久化或者配置(配置任务通过@Scheduled注解进行硬编码,不能抽离到类之外),因此考虑理解Scheduling模块的底层原理,并且基于此造一个简单的轮子,使之支持调度任务配置:通过配置文件或者JDBC数据…
Spark Streaming揭秘 Day21 动态Batch size实现初探(下) 接昨天的描述,今天继续解析动态Batch size调整的实现. 算法 动态调整采用了Fix-point迭代算法,其本质是一种回归计算,算法如下: 有点类似机器学习,学习当前SparkStreaming的状况,根据状况把Batch Duration调到最小,来获得最高的稳定性. 下面这张图比较重要,是主要描述了算法的实现思想: 基本思想是按100ms一个小的批次,根据处理情况,Job Generator会调整自…
Spark Streaming揭秘 Day20 动态Batch size实现初探(上) 今天开始,主要是通过对动态Batch size调整的论文的解析,来进一步了解SparkStreaming的处理机制,因为比较偏理论,么有代码演示. 缘起 从目前的业务发展来看,线上处理目前来看已经越来越重要,而一个突出的矛盾就是,传统框架Oracle+j2ee的框架下,存在一个致命的问题,就是无法突破单台机器的局限,可能容纳此刻流入的数据,于是分布式流处理程序越来越火热. 流处理的核心是追求更快的处理速度.但…
1.要想明白spark application调度机制,需要回答一下几个问题: 1.谁来调度? 2.为谁调度? 3.调度什么? 3.何时调度? 4.调度算法 前四个问题可以用如下一句话里来回答:每当集群资源发生变化时(包含master主备切换),active master 进程为所有已注册的并且没有调度完毕的application调度Worker节点上的Executor进程. 集群资源发生变化是什么意思呢?这里的集群资源指的主要是cores的变化,注册/移除Executor进程使得集群的free…
官网链接: http://spark.apache.org/docs/latest/job-scheduling.html 主要介绍: 1 application级调度方式 2 单个application内job的调度方式…
Spark Streaming揭秘 Day17 资源动态分配 今天,让我们研究一下一个在Spark中非常重要的特性:资源动态分配. 为什么要动态分配?于Spark不断运行,对资源也有不小的消耗,在默认情况下,Spark采用的是粗粒度分配,那么低峰值时会产生大量的资源浪费. 比较有意思的是,在Spark Core和Spark Streaming中对于动态资源管理,采用了两种不同的思路. Spark core:动态资源控制 在SparkContext启动时,可以看到就有一个动态资源分配的属性控制,默…
资源管理与调度系统-YARN的基本架构与原理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 为了能够对集群中的资源进行统一管理和调度,Hadoop2.0引入了数据操作系统YARN.YARN的引入大大提高了集群的资源利用率,并降低了集群管理成本. 首先,YARN能够将资源按需分配给各个应用程序,这大大提高了资源利用率,其次,YARN允许各类短作业和长服务混合部署在一个集群中.并提供了容错,资源隔离及负载均衡等方面的支持,这大大简化了作业和服务的部署和管理成本. 一.YARN产生…