之前在微信公众号中更新了以下几个章节 1,如何学习PCL以及一些基础的知识 2,PCL中IO口以及common模块的介绍 3,PCL中常用的两种数据结构KDtree以及Octree树的介绍          三维点云分割是将同属性的点云物体分割出来,以便于单独对该点云物体处理,但是由于点云数据是一种高冗余度,且不均匀的数据结构,所以点云分割具有一定挑战性,点云库于(PCL)2011年推出以来,得到行业广泛的应用,该库包含了最先进的3D感知算法,并包含了LIDAR和三维扫描仪的接口,这使得点云…
写在前面   最近公众号的活动让更多的人加入交流群,尝试提问更多的我问题,群主也在积极的招募更多的小伙伴与我一起分享,能够相互促进.   这里总结群友经常问,经常提的两个问题,并给出我的回答: (1)啥时候能出教程,能够讲解PCL中的各种功能? (2)如何解决大规模点云的问题呢?     以下给出正式的解答以及计划安排 问题1:对于出PCL的教程,其实网上资料已经有很多,但是没有十分系统的资料,对于该问题,我也在想该如何去做,本人将会在后期的计划中慢慢推出系统的学习教程,实现理论与代码并行的PC…
(3)上两篇介绍了关于欧几里德分割,条件分割,最小分割法等等还有之前就有用RANSAC法的分割方法,这一篇是关于区域生成的分割法, 区 域生长的基本 思想是: 将具有相似性的像素集合起来构成区域.首先对每个需要分割的区域找出一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子有相同或相似性质的像素 (根据事先确定的生长或相似准则来确定)合并到种子像素所在的区域中.而新的像素继续作为种子向四周生长,直到再没有满足条件的像素可以包括进来,一个区 域就生长而成了. 区域生长算法直观感觉上和欧几里…
基于欧式距离的分割和基于区域生长的分割本质上都是用区分邻里关系远近来完成的.由于点云数据提供了更高维度的数据,故有很多信息可以提取获得.欧几里得算法使用邻居之间距离作为判定标准,而区域生长算法则利用了法线,曲率,颜色等信息来判断点云是否应该聚成一类. (1)欧几里德算法 具体的实现方法大致是: 找到空间中某点p10,有kdTree找到离他最近的n个点,判断这n个点到p的距离.将距离小于阈值r的点p12,p13,p14....放在类Q里 在 Q\p10 里找到一点p12,重复1 在 Q\p10,p…
(2)关于上一篇博文中提到的欧几里德分割法称之为标准的距离分离,当然接下来介绍其他的与之相关的延伸出来的聚类的方法,我称之为条件欧几里德聚类法,(是我的个人理解),这个条件的设置是可以由我们自定义的,因为除了距离检查,聚类的点还需要满足一个特殊的自定义的要求,就是以第一个点为标准作为种子点,候选其周边的点作为它的对比或者比较的对象,如果满足条件就加入到聚类的对象中,至于到底怎么翻译我也蒙了,只能这样理解了 主要的缺点:该算法没有初始化种子系统,没有过度分割或者分割不足的控制,还有就是从主循环运算…
I/O模块中共有21个类 (1)class pcl::FIleReader:定义了PCD文件的读取接口,主要用作其他读取类的父类   pcl::FileReader有pcl::PCDReader和pcl::PLYReader子类 (2)class pcl::FIleWrite : 与class pcl::FIleReader对应,是写入PCD文件类的接口定义,作为其他写入类的父类,pcl::Filewriter有pcl::PCDwriter和pcl::PLYWriter子类 (3) class…
github地址:https://github.com/Lextal/pspnet-pytorch/blob/master/pspnet.py PSP模块示意图如下 代码如下 class PSPModule(nn.Module): def __init__(self, features, out_features=1024, sizes=(1, 2, 3, 6)): super().__init__() self.stages = [] self.stages = nn.ModuleList([…
(小技巧记录:博客园编辑的网页界面变小了使用Ctrl  ++来变大网页字体) 通过雷达,激光扫描,立体摄像机等三维测量设备获取的点云数据,具有数据量大,分布不均匀等特点,作为三维领域中一个重要的数据来源,点云主要是表征目标表面的海量点的集合,并不具备传统网格数据的几何拓扑信息,所以点云数据处理中最为核心的问题就是建立离散点间的拓扑关系,实现基于邻域关系的快速查找. k-d树 (k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和…
该文转自:https://www.cnblogs.com/li-yao7758258/p/6437440.html kd-tree理论以及在PCL 中的代码的实现   (小技巧记录:博客园编辑的网页界面变小了使用Ctrl  ++来变大网页字体) 通过雷达,激光扫描,立体摄像机等三维测量设备获取的点云数据,具有数据量大,分布不均匀等特点,作为三维领域中一个重要的数据来源,点云主要是表征目标表面的海量点的集合,并不具备传统网格数据的几何拓扑信息,所以点云数据处理中最为核心的问题就是建立离散点间的拓扑…
该论文的地址是:https://arxiv.org/pdf/1609.07720.pdf segmatch是一个提供车辆的回环检测的技术,使用提取和匹配分割的三维激光点云技术.分割的例子可以在下面的图片中看到. 该技术是基于在车辆附近提取片段(例如车辆.树木和建筑物的部分),并将这些片段与从目标地图中提取的片段相匹配.分段匹配可以直接转化为精确的定位信息,从而实现精确的三维地图构造和定位.在先前记录的部分(白色)和最近观察到的部分(彩色)之间,匹配的段的实例用绿色线显示在下面的图像中. 该方法依…