POJ3977 Subset 折半枚举】的更多相关文章

题目大意是给定N个数的集合,从这个集合中找到一个非空子集,使得该子集元素和的绝对值最小.假设有多个答案,输出元素个数最少的那个. N最多为35,假设直接枚举显然是不行的. 可是假设我们将这些数分成两半后再枚举的话,最多有2^18(262144),此时我们两半枚举后的结果进行排序后再二分搜索一下就能够了.复杂度为O(nlogn) n最多2^18. #include <stdio.h> #include <vector> #include <math.h> #include…
SubsetTime Limit: 30000MS        Memory Limit: 65536KTotal Submissions: 6754        Accepted: 1277 DescriptionGiven a list of N integers with absolute values no larger than 1015, find a non empty subset of these numbers which minimizes the absolute v…
题目链接:https://vjudge.net/problem/POJ-3977 题意:给一个大小<=35的集合,找一个非空子集合,使得子集合元素和的绝对值最小,如果有多个这样的集合,找元素个数最少的. 思路:显然,可以用折半搜索,分别枚举一半,最大是2的18次方,复杂度能够满足.因为集合非空,枚举时考虑只在前一半选和只在后一半选的情况.对于前一半后一半都选的情况,把前一半的结果存下来,排序,枚举后一半的时候在前一半里二分查找最合适的即可. 思路不难,实现有很多细节,最开始用dfs写得一直wa,…
2017-08-01 21:45:19 writer:pprp 题目: • POJ 3977• 给定n个数,求一个子集(非空)• 使得子集内元素和的绝对值最小• n ≤ 35 AC代码如下:(难点:枚举出sum) #include <iostream> #include <cstring> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm&…
Subset Time Limit: 30000MS   Memory Limit: 65536K Total Submissions: 5721   Accepted: 1083 Description Given a list of N integers with absolute values no larger than 1015, find a non empty subset of these numbers which minimizes the absolute value of…
暴力搜索超时,但是折半后两部分状态支持合并的情况,可用折半枚举算法 poj3977 给一个序列a[],从里面找到k个数,使其和的绝对值最小 经典折半枚举法+二分解决,对于前一半数开一个map,map[sum]里存下凑出当前sum的最小元素个数 枚举后面一半的所有情况,然后lower_bound去找map里最接近-sum的元素,由于要求输出sum最小并且num也尽量小的答案,所以用pair来存答案 #include<iostream> #include<algorithm> #inc…
Load Balancing 给出每个学生的学分.   将学生按学分分成四组,使得sigma (sumi-n/4)最小.         算法:   折半枚举 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <string> #include <vector> #i…
1514: Packs Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 61  Solved: 4[Submit][Status][Web Board] Description Give you n packs, each of it has a value v and a weight w. Now you should find some packs, and the total of these value is max, total of…
这道题乍一看是普通的01背包,最最基础的,但是仔细一看数据,发现普通的根本没法做,仔细观察数组发现n比较小,利用这个特点将它划分为前半部分和后半部分这样就好了,当时在网上找题解,找不到,后来在挑战程序设计上找到了这个题,就拿来引用一下 挑选物品的方法总从2^n中,直接枚举肯定不行,因为n最大为40,但是如果n为20就可以了,这时候就要用到折半枚举,先枚举前一半,在枚举后一半.先把前把部分的选取方法对应的重量和价值总和记为w1, v1,这样后半部分寻找w2 <= W - w1时 使v2最大的选取方…
888E - Maximum Subsequence 思路:折半枚举. 代码: #include<bits/stdc++.h> using namespace std; #define ll long long #define pb push_back #define mem(a,b) memset(a,b,sizeof(a)) ; int a[N]; set<int>s; int main() { ios::sync_with_stdio(false); cin.tie(); i…