Solution -「BalticOI 2004」Sequence】的更多相关文章

\(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率随机.求 \(\{b_n\}\) 中 LIS(最长上升子序列)的期望长度.对 \(10^9+7\) 取模.   \(n\le6\),\(a_i\le10^9\). \(\mathcal{Solution}\)   欺负这个 \(n\) 小得可爱,直接 \(\mathcal O(n!)\) 枚举 \(…
\(\mathcal{Description}\)   Link.   求长度为 \(n\),值域为 \([1,m]\) 的整数序列 \(\lang a_n\rang\) 的个数,满足 \(\not\exist i\in[1,n),~\max_{j=1}^i\{a_j\}=\min_{j=i+1}^n\{a_j\}\),答案对大素数 \(p\) 取模.   \(n\le400\),\(m\le10^8\). \(\mathcal{Solution}\)   前几天刚胡了一个 "DP and DP…
题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9+7\) 取模. 数据规模   \(n\le3\times10^4\). \(\text{Solution}\)   显然当 \(n<m\),答案为 \(0\),先特判掉.   首先列一个 naive 的 DP 方程,令 \(f(i,j)\) 为前 \(i\) 次操作选出的集合并大小为 \(j\)…
\(\mathcal{Description}\)   Link.   给定 \(n\) 个数 \(a_i\),要求从中选出最多的数,满足任意两个数之积都不是完全立方数.   \(n\le10^5\),\(a_i\le10^{10}\). \(\mathcal{Solution}\)   特判完全立方数--至多选一个.然后按一贯的套路约去立方因子.不过由于值域比较大,我们可以只筛出 \(\max\{a_i\}^{\frac{1}3}\) 的素数,计算这些素数在 \(a_i\) 的标准分解中的指数…
\(\mathcal{Description}\)   Link.   给定 \(\{x_n\}\),对于满足 \(h_i\in[1,x_i]\) 的序列 \(\{h_n\}\),定义序列 \(\{p_n\}\) 满足: \[p_i=\begin{cases}-1,&(\not\exist j<i)(h_j>h_i)\\\max_{j<i}\{j|h_j>h_i\},&\text{otherwise}\end{cases} \]   求所有可能出现的本质不同的 \(…
\(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \(p_{i,k}\).依照此规则确定权值后,你不停抽卡,每次抽到第 \(i\) 张卡牌的概率正比于 \(w_i\),直到所有卡都被抽过至少一次.   此后,记 \(t_i\) 表示第 \(i\) 张牌第一次被抽到的时间.给定 \(n-1\) 条形如 \(\lang u,v\rang\) 的限制,表示…
\(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\) 的数量,使得 \(H\) 是强连通图.答案模 \((10^9+7)\).   \(n\le15\). \(\mathcal{Solution}\)   仙气十足的状压容斥.   令 \(f(S)\) 表示仅考虑点集 \(S\) 的导出子图时,使得 \(S\) 强连通的选边方案数,那么 \(f(V…
\(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\) 对车可以互相攻击.   的摆放方案数,对 \(998244353\) 取模.   \(n\le2\times10^5\). \(\mathcal{Solution}\)   这道<蓝题>嗷,看来兔是个傻子.   从第一个条件入手,所有格子可被攻击,那就有「每行都有车」或「每列都有车」成立.不妨…
魔法题位面级乱杀. 「JOISC 2020 Day4」治疗计划 因为是不太聪明的 Joker,我就从头开始理思路了.中途也会说一些和 DP 算法本身有关的杂谈,给自己的冗长题解找借口. 首先,治疗方案不会重复使用.因为重复使用只会空加代价,而不会在特定时刻产生额外贡献.故而总决策方案应有 \(2^m\) 个,我们需要在这 \(2^m\) 个中找出最小可能花费. DFS 是最显然的算法,但显然不可做,不过它枚举状态的思路很好地把我们引向了 DP. 于是开始尝试设计 DP 状态. DP 状态定义中,…
写的大多只是思路,比较简单的细节和证明过程就不放了,有需者自取. 基环树简介 简单说一说基环树吧.由名字扩展可得这是一类以环为基础的树(当然显然它不是树. 通常的表现形式是一棵树再加一条非树边,把图画出来是一种向外发散的有趣图案. 体现在[题目条件]上就是一个 \(n\) 个点 \(n\) 条边的连通图或保证每一个点的入度 / 出度为 \(1\) (有向图:前者称为外向树,后者称为内向树). 常常会把一些在树上做的 dp 放在基环树上以提高题目难度. 惯用思路是先把以环上的点为根的子树内的信息跑…