​  本文来自公众号"AI大道理" 人类利用有限的注意力资源从大量信息中快速筛选出高价值信息,这是人类在长期进化中形成的一种生存机制,人类视觉注意力机制极大地提高了视觉信息处理的效率与准确性. attention从注意力模型的命名方式看,借鉴了人类的注意力机制. ​ 编辑 1.从机器翻译说起 Seq2Seq模型,想要解决的主要问题是:如何把机器翻译中,变长的输入X映射到一个变长输出Y的问题. 序列模型可以较好地学习到句子的语法知识,但是,在应用Sequence学习机器翻译问题时,仍然存…
注意力机制之Attention Augmented Convolutional Networks 原始链接:https://www.yuque.com/lart/papers/aaconv 核心内容 We propose to augment convolutional operators with this self-attention mechanism by concatenating convolutional feature maps with a set of feature map…
注意力机制(Attention Mechanism)在自然语言处理中的应用 本文转自:http://www.cnblogs.com/robert-dlut/p/5952032.html  近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分…
注意力机制(Attention Mechanism)在自然语言处理中的应用 近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分享. 1 Attention研究进展 Attention机制最早是在视觉图像领域提出来的,应该是在九几年思想就提…
近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,下面是一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分享. 1 Attention研究进展 Attention机制最早是在视觉图像领域提出来的,应该是在九几年思想就提出来了,但是真正火起来应该算是google mind团队的这篇论文<Recurrent…
这篇文章整理有关注意力机制(Attention Mechanism )的知识,主要涉及以下几点内容: 1.注意力机制是为了解决什么问题而提出来的? 2.软性注意力机制的数学原理: 3.软性注意力机制.Encoder-Decoder框架与Seq2Seq 4.自注意力模型的原理. 一.注意力机制可以解决什么问题? 神经网络中的注意力机制(Attention Mechanism)是在计算能力有限的情况下,将计算资源分配给更重要的任务,同时解决信息超载问题的一种资源分配方案.在神经网络学习中,一般而言模…
什么是Attention机制 Attention机制通俗的讲就是把注意力集中放在重要的点上,而忽略其他不重要的因素.其中重要程度的判断取决于应用场景,拿个现实生活中的例子,比如1000个人眼中有1000个哈姆雷特.根据应用场景的不同,Attention分为空间注意力和时间注意力,前者用于图像处理,后者用于自然语言处理.本文主要介绍Attention机制在Seq2seq中的应用. 为什么要用Attention机制 我们知道在Seq2seq模型中,原始编解码模型的encode过程会生成一个中间向量C…
深度学习做NLP的方法,基本上都是先将句子分词,然后每个词转化为对应的词向量序列.(https://kexue.fm/archives/4765) 第一个思路是RNN层,递归进行,但是RNN无法很好地学习到全局的结构信息,因为它本质是一个马尔科夫决策过程. 第二个思路是CNN层,其实CNN的方案也是很自然的,窗口式遍历,比如尺寸为3的卷积,就是 在FaceBook的论文中,纯粹使用卷积也完成了Seq2Seq的学习,是卷积的一个精致且极致的使用案例,CNN方便并行,而且容易捕捉到一些全局的结构信息…
一.编码-解码架构 目的:解决语音识别.机器翻译.知识问答等输出输入序列长度不相等的任务. C是输入的一个表达(representation),包含了输入序列的有效信息. 它可能是一个向量,也可能是一个固定长度的向量序列: 如果C是一个向量序列,则它和输入序列的区别在于:序列C是定长的.较短的:而输入序列是不定长的.较长的. 二.注意力机制 1.attention 注意力权重用来估计其他元素与其相关的强度,并将由注意力加权的值的总和作为计算最终目标的特征. step1:计算其他元素与待测元素的相…
使用Multi-head Self-Attention进行自动特征学习的CTR模型 https://blog.csdn.net/u012151283/article/details/85310370 nlp中的Attention注意力机制+Transformer详解 https://zhuanlan.zhihu.com/p/53682800…