https://docs.scipy.org/doc/numpy-dev/user/quickstart.html  (numpy官网一些教程) numpy教程:数组创建 python中的矩阵.多维数组----numpy 1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工…
在Python中创建M x N的数组 一般有三种方法: 列表乘法 dp = [[0] * n] * m for 循环 dp= [[0 for _ in range(n)] for _ in range(m )] 乘法+for循环 dp = [[0] * n for _ in range(m )] 但是,在使用列表乘法创建的时候会出现问题: dp = [[0]*2]*2 print(dp) # [[0, 0], [0, 0]] print(id(dp[0])) #3142462401856 pri…
Numpy 是Python中科学计算的核心库.它提供一个高性能多维数据对象,以及操作这个对象的工具.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成C.C++.Fortran等语言编写的代码的工具. 首先要导入numpy库:import numpy as np NumPy函数和属性: 类…
在计算机的世界中,同一个问题,使用不同的数据结构和算法实现,所使用的资源有很大差别 为了方便量化python中算法的资源消耗,对性能做测试非常有必要,这里针对stack做了python语言 下的性能分析.为后续算法分析做个基础. 代码: import timeit from timeit import Timer class Stack: def __init__(self): self.items = [] def is_empty(self): return self.items == []…
一.神器1 -- 内置函数eval eval是python中的内置函数,它的作用是将字符串变为所对应的表达式,也相当于一个功能代码加双引号变为字符串,而eval又将字符串转为相应的功能,它在使用过程中有绝对的优势,但是也存在使用风险,所以要在程序中正确使用,本人建议不要使用 eval的语法格式如下: eval(expression[, globals[, locals]]) expression : 字符串 globals : 变量作用域,全局命名空间,如果被提供,则必须是一个字典对象. loc…
2019-01-15 10:48:43 前言 众所周知在python中读取文件常用的三种方法:read(),readline(),readlines(),今天看项目是又忘记他们的区别了.以前看书的时候觉得这东西很简单,一眼扫过,待到用时却也只知道有这么几个方法,不懂得它的原理与用法.也许吧,没有永远的记忆,况且根本没有用心去记它.话不多说,来一起看看详细的介绍: 准备 假设a.txt的内容如下所示: Hello Welcome What is the fuck... 一.read([size])…
2. 创建一般的多维数组 import numpy as np a = np.array([1,2,3], dtype=int)  # 创建1*3维数组   array([1,2,3]) type(a)  # numpy.ndarray类型 a.shape  # 维数信息(3L,) a.dtype.name   # 'int32' a.size   # 元素个数:3 a.itemsize  #每个元素所占用的字节数目:4     b=np.array([[1,2,3],[4,5,6]],dtyp…
最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工具箱,函数查询.调用.变量查询等非常方便,或许以后用久了python也会感觉很好用.与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便. 言归正传,做算法要用到很多的向量…
numpy库提供非常便捷的数组运算,方便数据的处理. 1.数组与标量之间可直接进行运算 In [45]: aOut[45]:array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) In [46]: a/5Out[46]:array([[ 0. , 0.2, 0.4, 0.6], [ 0.8, 1. , 1.2, 1.4], [ 1.6, 1.8, 2. , 2.2]])12345678910112.NumPy一元函数对ndarray中的数据执…
我所说的处理错误的方法,其实是try:,except和raise这两种. 首先抛出一个实例, dictt={'a':1,'b':2,'c':3} try: if dictt['d']>1: #字典中没有'd' print("right!") except KeyError: print("there is no 'd'") 该程序的运行结果: there is no 'd' 而改为raise时,执行结果却是:…