一.学习红黑树前的准备: 熟悉基础数据结构 了解二叉树概念 二.红黑树的规则和规则分析: 根节点是黑色的 所有叶子节点(Null)是黑色的,一般会认定节点下空节点全部为黑色 如果节点为红色,那么子节点全部为黑色 从某一节点出发,到达叶子节点的所有分支上,黑色节点的数量相同 由规则4引出的一个定义,从根节点到叶子节点的黑色节点数量成为 树的黑色高度.我们会发现由于红色节点下全部为黑色节点,那么最极端的情况就是,根节点出发,左子树全部为黑色节点,右子树为红色-黑色轮换,这样设想下不难发现,树的最长路…
​ 前言 众所周知,红黑树是非常经典,也很非常重要的数据结构,自从1972年被发明以来,因为其稳定高效的特性,40多年的时间里,红黑树一直应用在许多系统组件和基础类库中,默默无闻的为我们提供服务,身边有很多同学经常问红黑树是怎么实现的,所以在这里想写一篇文章简单和大家聊聊下红黑树 小编看过很多讲红黑树的文章,都不是很容易懂,主要也是因为完整的红黑树很复杂,想通过一篇文章来说清楚实在很难,所以在这篇文章中我想尽量用通俗口语化的语言,再结合 Robert Sedgewick 在<算法>中的改进的版…
转载自http://blog.csdn.net/yangjun2/article/details/6542321 介绍另一种平衡二叉树:红黑树(Red Black Tree),红黑树由Rudolf Bayer于1972年发明,当时被称为平衡二叉B树(symmetric binary B-trees),1978年被Leonidas J. Guibas 和 Robert Sedgewick改成一个比较摩登的名字:红黑树. 红黑树和之前所讲的AVL树类似,都是在进行插入和删除操作时通过特定操作保持二叉…
红黑树是上一章二叉搜索树的改进,实现一种平衡 ,保证不会出现二叉树变链表的情况,基本动态集合操作的时间复杂度为O(lgn) 实际用途:c++stl中的set,map是用他实现的 红黑树的性质: 1.每个结点或是红色的,或是黑色的 2.跟结点是黑色的 3.每个叶结点(NIL)是黑色 4.如果一个结点是红色的,则它的两个结点都是黑色的 5.对每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同的数目的黑色结点(数目被称为黑高bh(x)) 如下图: (T.nil 哨兵后面被忽略 None) 红…
public class RBTree<K extends Comparable<K>, V> { public static boolean RED = true; public static boolean BLACK = false; public Node root; class Node { K key; V val; Node left, right; boolean color; int size;//高度 Node(K key, V val, boolean col…
目录 前言 一. B树 1.1 概念 1.2 2-3-4树 1.3 2-3-4树的插入 节点分类 1.4 2-3-4树的删除 1.4.1 当删除节点是叶子节点 1.4.1.1 当删除节点为非2节点 1.4.1.2 当删除节点为2节点 1.4.1.2.1 兄弟节点是非2节点 1.4.1.2.2 兄弟节点是2节点 1.4.2 如果删除节点是非叶子节点 二. 红黑树 2.1 红黑树的定义 2.2 2-3-4树节点到红黑树的转换 2.2.1 2节点转换 2.2.2 3节点转换 2.2.3 4节点转换 2…
红黑树概念 特殊的二叉查找树,每个节点上都有存储位表示节点的颜色是红(Red)或黑(Black).时间复杂度是O(lgn),效率高. 特性: (1)每个节点或者是黑色,或者是红色. (2)根节点是黑色. (3)每个叶子节点(NIL)是黑色.(只为空(NIL或null)的节点) (4)如果一个节点是红色的,则它的子节点必须是黑色的.(黑结点可连续,红结点不能连续) (5)从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点.   定理:一棵含有n个节点的红黑树的高度至多为2log(n+1)…
摘要 兹博文探讨四个重点:1.简单介绍红黑树:2.红黑树节点数据结构:3.红黑树节点中父节点指针域和自身节点颜色有机结合:4.定义红黑树和操作树节点父节点指针和节点颜色的接口,包括一系列宏和两个函数. 注:所有代码源自kernel 3.10 前言 援引<Documentation/rbtree.txt>中的一部分,并做简单的翻译(个别地方不太好),姑且作为红黑树博文的开篇. What are red-black trees, and what are they for? -----------…
一.问题描述 实现3种树中的两种:红黑树,AVL树,Treap树 二.算法原理 (1)红黑树 红黑树是一种二叉查找树,但在每个结点上增加一个存储位表示结点的颜色,可以是red或black.红黑树满足以下五个性质: 1) 每个结点或是红色或是黑色 2) 根结点是黑色 3) 每个叶结点是黑的 4)如果一个结点是红的,则它的两个儿子均是黑色 5) 每个结点到其子孙结点的所有路径上包含相同数目的黑色结点 本实验主要实现红黑树的初始化,插入和删除操作.当对红黑树进行插入和 删除操作时,可能会破坏红黑树的五…
1 介绍 这部分终于整理完了,太耗时间了,留下来备忘吧! 之前看STL源码时,只是研究了红黑树的插入部分.在stl源码剖析的书中,也没有涉及到删除操作的分析,这次对删除操作也进行了详细的研究, 并且还是这次学习的重点.下面开始. 红黑树需要遵从下面的5条性质: (1)节点要么是红色要么是黑色: (2)根节点为黑色: (3)叶子节点即NIL节点必定为黑色: (4)红色节点的孩子节点必定为黑色: (5)从任一节点到叶子节点,所包含的黑色节点数目相同,即黑高度相同: 上面的5条规则,主要是第(4).(…