小目标检测很难,为什么难.想象一下,两幅图片,尺寸一样,都是拍的红绿灯,但是一副图是离得很近的拍的,一幅图是离得很远的拍的,红绿灯在图片里只占了很小的一个角落,即便是对人眼而言,后者图片中的红绿灯也更难识别. 说回到cnn,不断地卷积以后,feature map的尺寸变小.这时候feature map所代表的语义信息已经很丰富了,如果绘图绘制出来,可能会看见代表的是某种形状,颜色,或更高级的更抽象的概念了.但是由于feature map尺寸减小,所以检测小目标困难. 我们可以用同一图片,不同尺寸…
好久没有写文章了(对不起我在划水),最近在看北京的租房(真真贵呀). 预告一下,最近无事,根据个人多年的证券操作策略和自己的浅显的AI时间序列的算法知识,还有自己Javascript的现学现卖,在微信小程序上弄了个简单的辅助系统.我先试试效果如何,不错的话将来弄个文章给大家介绍介绍. 感兴趣可以联系炼丹兄哦,WX:cyx645016617. 1 概述 FPN是Feature Parymid Network的缩写. 目标检测任务中,像是在YOLO1中那种,对一个图片使用卷积来提取特征,经过了多个池…
SPPNet paper:Spatial pyramid pooling in deep convolutional networks for visual recognition code 首先介绍最为传统的alexNet,本文以及R-CNN有基于该网络上进行改进 1.输入224*224的图片,经过卷积池化等操作后在最后的卷积层会变成13*13的图片 2.后面接两个全连接层 3.最后接一个softmax进行打分分类(分成1000类是因为ImageNet上的图片总类为1000类) SPPNet的…
一. 提出背景 论文:Feature Pyramid Networks for Object Detection  [点击下载] 在传统的图像处理方法中,金字塔是比较常用的一种手段,像 SIFT 基于金字塔做了多层的特征采集,对于深度网络来讲,其原生的卷积网络特征决定了天然的金字塔结构.深度网络在目标检测领域的应用 比如早期的 Fast RCNN,Faster RCNN 都是在最后一层卷积层 进行检测,后续针对的改进包括 ION.HyperNet.MSCNN 等都结合多尺度的特征,本文讨论了多尺…
https://wiki.qt.io/New_Features_in_Qt_5.6 (跨平台High-DPI,改进WebEngine到45,支持WIN 10,Canvas3D,3D) https://wiki.qt.io/New_Features_in_Qt_5.7 (充分利用C++11进行编写,Qt 3D,Qt Quick Controls 2,Qt Charts,Qt Data Visualization) http://blog.qt.io/blog/2016/02/22/qt-roadm…
引言 对于小目标通常需要用到多尺度检测,作者提出的FPN是一种快速且效果好的多尺度检测方法. 方法 a,b,c是之前的方法,其中a,c用到了多尺度检测的思想,但他们都存在明显的缺点. a方法:把每图片都进行缩放,在进行检测,这种做法最大的问题是太慢,因为要多花好几倍的时间: c方法:其实就是SSD论文中用到的方法,feature map一层层下采样,然后对不同scale的feature map之间进行预测,这种做法最大的缺点就是底层feature map分辨率高但是语义信息弱,分类不准: 而作者…
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepages(随意排序,不分先后): 1.USC Computer Vision Group:南加大,多目标跟踪/检测等: 2.ETHZ Computer Vision Laboratory:苏黎世联邦理工学院,欧洲最好的几个CV/ML研究机构: 3.Helmut Grabner:Online Boost…
​前言  在计算机视觉中,相对位置编码的有效性还没有得到很好的研究,甚至仍然存在争议,本文分析了相对位置编码中的几个关键因素,提出了一种新的针对2D图像的相对位置编码方法,称为图像RPE(IRPE). 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 代码:https://github.com/microsoft/Cream/tree/main/iRPE Background Transformer的核心是self-…
Inception V3网络(注意,不是module了,而是network,包含多种Inception modules)主要是在V2基础上进行的改进,特点如下: 将滤波器尺寸(Filter Size)较大的卷积分解成若干滤波器尺寸较小的卷积.根据作者在论文中提出的optimization ideas,大卷积总可以被分解成3*3卷积层序列,而且需要的话还可以进一步分解成更小的卷积,如n*1卷积,事实上,这比2*2卷积层更好.对大卷积层进行分解的好处显而易见,既可以加速计算(多余的计算能力可以用来加…
论文提出PConv为对特征金字塔进行3D卷积,配合特定的iBN进行正则化,能够有效地融合尺度间的内在关系,另外,论文提出SEPC,使用可变形卷积来适应实际特征间对应的不规律性,保持尺度均衡.PConv和SEPC对SOTA的检测算法有显著地提升 ,并且没有带来过多的额外计算量   来源:晓飞的算法工程笔记 公众号 论文: Scale-Equalizing Pyramid Convolution for Object Detection 论文地址:https://arxiv.org/pdf/2005…