bzoj3505】的更多相关文章

http://www.lydsy.com/JudgeOnline/problem.php?id=3505 (题目链接) 题意 给定一个n*m的网格,请计算三点都在格点上的三角形共有多少个. Solution $${ans=平面中选三个点的方案数-三点共线的方案数}$$ $${ans=C_{(n+1)*(m+1)}^{3}-(n+1)*C_{m+1}^{3}-(m+1)*C_{n+1}^{3}-斜的三点共线的方案数}$$ 斜的三点共线方案数不会求..左转题解:http://blog.csdn.ne…
http://blog.csdn.net/zhb1997/article/details/38474795 #include<cstdio> #include<algorithm> #include<iostream> using namespace std; typedef long long ll; int n,m; ll ans; int main() { // freopen("bzoj3505.in","r",stdin…
显然可以用总方案数减掉三点共线的情况.对于三点共线,一个暴力的做法是枚举起点终点,其间整点数量即为横纵坐标差的gcd-1.这样显然会T,注意到起点终点所形成的线段在哪个位置是没有区别的,于是枚举线段算出这样的线段条数就可以了. 似乎可以莫比乌斯反演一波. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include&…
[BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和n. Output 输出一个正整数,为所求三角形数量. Sample Input 2 2 Sample Output 76 数据范围 1<=m,n<=1000 题解:显然要用补集法,我们只需要求出三点共线的方案数即可.方法是先枚举两端的点所形成的向…
[bzoj3505][Cqoi2014]数三角形 2014年5月15日3,5230 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4×4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和n. Output 输出一个正整数,为所求三角形数量. Sample Input 2 2 Sample Output 76 数据范围1<=m,n<=1000 题解 就是全部去减,减去在一列的,在一行的,在斜对角的,…
数三角形 bzoj-3505 CQOI-2014 题目大意:给你一个n*m的网格图,问你从中选取三个点,能构成三角形的个数. 注释:$1\le n,m\le 1000$. 想法:本来是想着等中考完了之后花上一周的时间把之前欠的blog都更掉,然后做了这道题发现网上的题解让我匪夷所思(他们写着任何人都能看懂的代码,说着只有自己才能听懂的话).其实是这样的,求三角形个数就等价于求有多少种选取的方案使得三点共线.显然竖着的和横着的都是可以O(1)的,我们只需要计算斜着的就行了.那么,我们枚举什么才能使…
「BZOJ3505」[CQOI2014] 数三角形 这道题直接求不好做,考虑容斥,首先选出3个点不考虑是否合法的方案数为$C_{(n+1)*(m+1)}^{3}$,然后减去三点一线的个数就好了.显然不能枚举端点,我们可以考虑枚举两个点的x,y差值i,j,那么中间整点的个数为(gcd(i,j)-1),这样的正方形有多个,所以(n-i+1)*(m-j+1)*(gcd(i,j)-1)*2,乘2是因为有两条对角线,但是当i=0或j=0是就不能乘2了. #include<iostream> #inclu…
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权! Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和n. Output 输出一个正整数,为所求三角形数量. S…
ans=C((n+1)*(m+1),3)-三点一线的情况横线竖线我们可以先去掉然后考虑斜线,由于对称性我们只要考虑斜率大于0的即可有一个很显然的结论,但两点坐标差为x,y时,这条线段上的点数为gcd(x,y)我们设左下角点为(0,0),则两端点坐标差为x,y的线段有(n-x+1)*(m-y+1)要注意同在一条直线上不能重复计算,我们考虑线段更容易一点所以,对于每条线段,三点一线的情况为除去两端点的线段上点数 var i,j,n,m:longint; ans,tmp:int64; function…
http://exam.upc.edu.cn/problem.php?id=3843&csrf=8oK86t2oHSgi3Q4SX3qOJGeENe6pfXri 时间限制: 1 Sec 内存限制: 128 MB 题目描述 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意:三角形的三点不能共线.n×m的网格共有(n+1)×(m+1)个格点. 输入 输入一行,包含两个空格分隔的正整数m和n(1<=m,n<=1000). 输出 输出一个正…