论文:NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE 综述 背景及问题 背景: 翻译: 翻译模型学习条件分布后,给定一个源句,通过搜索最大条件概率的句子,可以生成相应的翻译. 神经网络翻译:两个组件:第一个:合成一个源句子x:第二个:解码一个目标句子y. 问题:固定长度向量是编码器 - 解码器架构性能提升的瓶颈. 本文主要思想 本文提出:允许模型自动(软)搜索与预测目标单词相关的源句 --- 扩展的编码器…
Foundations of Machine Learning: The PAC Learning Framework(2) (一)假设集有限在一致性下的学习界. 在上一篇文章中我们介绍了PAC-learnable的定义,以及证明了一个例子是PAC-learnable. 这一节我们介绍当hypothesis set是有限时,且算法$\mathcal{A}$相对与样本S满足一致性条件下的PAC问题.下一节介绍不一致条件下的PAC问题. 一致性(consistent):如果一个算法产生的假设$h_s…
写在最前:本系列主要是在阅读 Mehryar Mohri 等的最新书籍<Foundations of Machine Learning>以及 Schapire 和 Freund 的 <Boosting: Foundations and Algorithms>过程中所做的笔记.主要讨论三个部分的内容.第一部分是PAC的基本概念,介绍了泛化误差和经验误差,并且讨论了假设集$H$有限时的泛化边界.第二部分介绍了假设集$H$无限时的泛化边界,引入了三种衡量$H$复杂程度的机制,分别是Rad…
读论文 Neural Machine Translation by Jointly Learning to Align and Translate 这个论文是在NLP中第一个使用attention机制的论文.他们把attention机制用到了神经网络机器翻译(NMT)上.NMT其实就是一个典型的sequence to sequence模型,也就是一个encoder to decoder模型,传统的NMT使用两个RNN,一个RNN对源语言进行编码,将源语言编码到一个固定维度的中间向量,然后在使用一…
论文:word2vec Parameter Learning Explained 发表时间:2016 发表作者:Xin Rong 论文链接:论文链接 为了揭开Word2vec的神秘面纱,不得不重新整理复习了Word2vec的相关资料. Xin Rong 的这篇英文paper是更多人首推的 Word2vec 参考资料.这篇论文理论完备,由浅入深,且直击要害,既有 高屋建瓴的 intuition 的解释,也有细节的推导过程.下面一起学习下这篇paper. 由于word2vec模型学习生成的词向量表示…
原文地址 :[1409.0473] Neural Machine Translation by Jointly Learning to Align and Translate (arxiv.org) 读这篇主要希望学习了解Encoder-Decoder结构…
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning b…
Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, there's a good chance it's divided into a unit on supervised learning and a unit on unsupervised learning. We certainly care about this distinction f…
Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门课的 project 中见识过了 deep learning 的效果,最近在做一个东西的时候模型上遇到一点瓶颈于是终于决定也来了解一下这个魔幻的领域. 据说 Deep Learning 的 break through 大概可以从 Hinton 在 2006 年提出的用于训练 Deep Belief…
by Jason Brownlee on December 20, 2017 in Better Deep Learning Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a model on a second task. It is a popular approach in deep learning w…