PCA主成分分析的Python实现】的更多相关文章

作者:拾毅者 出处:http://blog.csdn.net/Dream_angel_Z/article/details/50760130 Github源代码:https://github.com/csuldw/MachineLearning/tree/master/PCA PCA(principle component analysis) .主成分分析,主要是用来减少数据集的维度,然后挑选出基本的特征.原理简单,实现也简单.关于原理公式的推导,本文不会涉及,你能够參考以下的參考文献,也能够去W…
PCA 主成分分析 原理概述 用途 - 降维中最常用的手段 目标 - 提取最有价值的信息( 基于方差 ) 问题 - 降维后的数据的意义 ? 所需数学基础概念 向量的表示 基变换 协方差矩阵 协方差 优化目标 降维实例 代码实现 """ 这里假设原始数据集为矩阵 dataMat,其中每一行代表一个样本,每一列代表同一个特征(与上面的介绍稍有不同,上 面是每一列代表一个样本,每一行代表同一个特征). """ import numpy as np ##…
用PCA(主成分分析法)进行信号滤波 此文章从我之前的C博客上导入,代码什么的可以参考matlab官方帮助文档 现在网上大多是通过PCA对数据进行降维,其实PCA还有一个用处就是可以进行信号滤波.网上对此的介绍比较少,正好最近研究了一下,所以把自己的理解记录下来. 对于PCA原理的介绍网上已经有很多帖子,我比较喜欢的是这个:PCA的数学原理.文章把PCA降维定性和数学理解分析得生动且透彻,这里不再重复. 直接上干货吧,简单一个例子: 给定信号: 其中有用信号为三个频率不同且幅值相位不相同的余弦函…
#PCA主成分分析,原文为文末的链接,代码为自己亲自手码 def cov_out1(dx,dy): #第一步:求解x,y各自的均值 mean_x=0 mean_y=0 for i in range(len(dx)): mean_x+=dx[i] mean_y+=dy[i] # print(i) mean_x/=len(dx) mean_y/=len(dy) # print('mean_x:',mean_x) # print('mean_y:',mean_y) #第二步:求解xy的联合均值 mea…
前言            以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的 信息较多.在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反 映此课题的信息有一定的重叠.主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立 尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有…
PCA(主成分分析)方法浅析 降维.数据压缩 找到数据中最重要的方向:方差最大的方向,也就是样本间差距最显著的方向 在与第一个正交的超平面上找最合适的第二个方向 PCA算法流程 上图第一步描述不正确,应该是去中心化,而不是中心化 具体来说,投影这一环节就是:将与特征值对应的k个特征向量分别作为行向量组成特征向量矩阵P 直接乘以特征变量就好.原来是二维数据,降维之后只有一维. 我们想保留几个维度的特征,就留下几个特征值和对应的特征向量.…
PCA主成分分析 PCA目的 最大可分性(最大投影方差) 投影 优化目标 关键点 推导 为什么要找最大特征值对应的特征向量呢? 之前看3DMM的论文的看到其用了PCA的方法,一开始以为自己对于PCA已经有了一定的理解,但是当看到式子的时候发现自己好像对于原理却又不甚明了,所以又回顾了以下PCA的原理,在此写一个总结. PCA目的 主成分分析(principal component analysis, PCA) 是常用的一种降维方法,其目的是为了让数据合理的降维,在降低维度的同时尽量保证数据的原始…
转载于http://blog.csdn.net/guyuealian/article/details/68487833 网上关于PCA(主成分分析)原理和分析的博客很多,本博客并不打算长篇大论推论PCA理论,而是用最精简的语言说明鄙人对PCA的理解,并在最后给出用Matlab计算PCA过程的三种方法,方便大家对PCA的理解.     源代码和附件下载地址: http://download.csdn.net/detail/guyuealian/9799160       关于PCA原理的文章,可参…
主成分分析(principal component analysis)是一种常见的数据降维方法,其目的是在“信息”损失较小的前提下,将高维的数据转换到低维,从而减小计算量. PCA的本质就是找一些投影方向,使得数据在这些投影方向上的方差最大,而且这些投影方向是相互正交的.这其实就是找新的正交基的过程,计算原始数据在这些正交基上投影的方差,方差越大,就说明在对应正交基上包含了更多的信息量.后面会证明,原始数据协方差矩阵的特征值越大,对应的方差越大,在对应的特征向量上投影的信息量就越大.反之,如果特…
1.背景         PCA(Principal Component Analysis),PAC的作用主要是减少数据集的维度,然后挑选出基本的特征.         PCA的主要思想是移动坐标轴,找到方差最大的方向上的特征值.什么叫方差最大的方向的特征值呢.就像下图中的曲线B.一样.它的覆盖范围最广. 基本步骤:(1)首先计算数据集的协方差矩阵                    (2)计算协方差矩阵的特征值和特征向量                    (3)保留最重要的n个特征 wh…