浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理 标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值 只要稍微看过一点线性代数的应该都知道范德蒙德行列式. \[V(x_0,x_1,\cdots ,x_{n-1})=\begin{bmatrix} {1}&{1}&{\cdots}&{1}\\ {x_{0}}&{x_{1}}&{\cdots}&{x_{n-1}}\\ {x_{…
4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k \le 9\) 几乎一下午和一晚上杠这道题...中间各种翻<具体数学>各种卡常 有两种做法,这里只说我认为简单的一种. 题目就是要求 \[ \sum_{i=0}^a \sum_{j=0}^b [i>j] \binom{a}{i} \binom{b}{j} \] 化一化得到 \[ \sum_{…
题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 "(",以及右边有 $y$ 个 ")",那么就有式子如下: ① 若 $x+1 \le y$:$C_{x}^{0} C_{y}^{1} + C_{x}^{1} C_{y}^{2} + \cdots + C_{x}^{x} C_{y}^{x+1} = \sum_{i=0}…
[题解]幼儿园篮球题(NTT+范德蒙德卷积+斯特林数) 题目就是要我们求一个式子(听说叫做超几何分布?好牛逼的名字啊) \[ \sum_{i=1}^{S}\dfrac 1 {N \choose n_i}\sum_{j=0}^{k_i}{m_i \choose j}{n_i-m_i\choose k_i- j}j^L \] 实际上$S $很小,所以本质上就是求 \[ \sum_{j=0}^{k_i}{m_i \choose j}{n_i-m_i\choose k_i- j}j^L \] 为了方便我…
[学习笔记]快速傅里叶变换 学习之前先看懂这个 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理--gzy hhh开个玩笑. 讲一下\(FFT\) 的流程,我也不准备长篇大论地分析\(FFT...\) 将系数表示法转换为点值表示法 \(O(n \log n)​\) 对于点值表示法直接进行操作 \(O(n)\) 将点值表示法转换为系数表示法 \(O(n \log n)​\) 这样的流程,最终复杂度是\(O(n \log n)\) 的,现在我们从最…
前言 \(\text{FFT}\)(快速傅里叶变换)是 \(O(n\log n)\) 解决多项式乘法的一个算法,\(\text{NTT}\)(快速数论变换)则是在模域下的,而 \(\text{MTT}\)(毛神仙对\(\text{FFT}\)的精度优化算法)可以针对任意模数.本文主要讲解这三种算法,具体的应用还请参考我博客内的题解. 正文 FFT-快速傅里叶变换 学习这个算法可以借助<算法导论>,当然算导上的东西需要耐心才能啃下来.这里只是概括一下算导上的介绍,并加入一些个人的见解.下面逐步介…
前言 当你兴冲冲地开始运行自己的Java项目时,你是否遇到过如下问题: 程序在稳定运行了,可是实现的功能点了没反应. 为了修复Bug而上线的新版本,上线后发现Bug依然在,却想不通哪里有问题? 想到可能出现问题的地方,却发现那里没打日志,没法在运行中看到问题,只能加了日志输出重新打包--部署--上线 程序功能正常了,可是为啥响应时间这么慢,在哪里出现了问题? 程序不但稳定运行,而且功能完美,但跑了几天或者几周过后,发现响应速度变慢了,是不是内存泄漏了? 以前,你碰到这些问题,解决的办法大多是,修…
前言 矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中,矩阵的运算是数值分析领域的重要问题. 基本介绍 (该部分为入门向,非入门选手可以跳过) 由 m行n列元素排列成的矩形阵列.矩阵里的元素可以是数字.符号或数学式. 比如一个$m\times n$的矩阵可以表示为: $$ A=\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\…
原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://oldboy.blog.51cto.com/2561410/736710 如果把来访用户比作来犯的"敌人",我们一定要把他们挡在800里地以外,即不能让他们的请求一下打到我们的指挥部(指挥部就是数据库及分布式存储). 如:能缓存在用户电脑本地的,就不要让他去访问CDN. 能缓存CDN服务器上的,就不要让CDN去访问源(静态服务器)了.能访问静态服务器的,就不要去访问动态…
flex布局浅谈和实例 阿基米德曾说给我一个支点我可以撬动地球,而拥有flex基本可以撬动所有的布局. 1.flex布局基本介绍及效果展示 工欲善其事必先利其器,来来来,一起看下基础知识先(呵~,老掉牙,但是有用啊). **flex-direction direction(方向),布局方向,顾名思义就是设置元素排列顺序.排队嘛,不外乎横着排和竖着排,猜到了吧.(夸你) 想象一下哈,现在有一个班主任(父元素)要组织学生(子元素)跳第三套中小学生广播体操. 我们默认设置从低到高的方向. 好啦,排队啦…