Keras之序贯(Sequential)模型】的更多相关文章

序贯模型(Sequential) 序贯模型是多个网络层的线性堆叠. 可以通过向Sequential模型传递一个layer的list来构造该模型: from Keras.models import Sequential from Keras.layers import Dense,Activation model = Sequential([Dense(32,units=784),Activation('relu'),Dense(10),Activation('softmax'),]) 也可以通过…
 先从sklearn说起吧,如果学习了sklearn的话,那么学习Keras相对来说比较容易.为什么这样说呢? 我们首先比较一下sklearn的机器学习大致使用流程和Keras的大致使用流程: sklearn的机器学习使用流程: from sklearn.模型簇 import 模型名 from sklearn.metrics import 评价指标 ''' 数据预处理及训练测试集分离提取''' myModel = 模型名称() # 对象初始化 myModel.fit(训练集x , 训练集y) #…
本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! Sequential是多个网络层的线性堆叠 可以通过向Sequential模型传递一个layer的list来构造该模型: from keras.models import Sequential from keras.layers import Dense, Activation model = Sequential([ Dense(32, input_dim=784), Activation('relu'), Dense(10)…
快速开始序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是"一条路走到黑". 可以通过向Sequential模型传递一个layer的list来构造该模型: from keras.models import Sequential from keras.layers import Dense, Activation model = Sequential([ Dense(32, units=784), Activation('relu'), Dense(10), Act…
Sequential模型接口 如果刚开始学习Sequential模型,请首先移步这里阅读文档,本节内容是Sequential的API和参数介绍. 常用Sequential属性 model.layers是添加到模型上的层的list Sequential模型方法 add add(self, layer) 向模型中添加一个层 layer: Layer对象 pop pop(self) 弹出模型最后的一层,无返回值 compile compile(self, optimizer, loss, metric…
Sequential 序贯模型 序贯模型是函数式模型的简略版,为最简单的线性.从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠. Keras实现了很多层,包括core核心层,Convolution卷积层.Pooling池化层等非常丰富有趣的网络结构. 我们可以通过将层的列表传递给Sequential的构造函数,来创建一个Sequential模型. from keras.models import Sequential from keras.layers import Dense, Activa…
序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”. 可以通过向Sequential模型传递一个layer的list来构造该模型: from keras.models import Sequential from keras.layers import Dense, Activation model = Sequential([ Dense(32, units=784), Activation('relu'), Dense(10), Activation('…
keras介绍与基本的模型保存 思维导图 1.keras网络结构 2.keras网络配置 3.keras预处理功能 模型的节点信息提取 config = model.get_config() 把model中的信息,solver.prototext和train.prototext信息提取出来 model = Model.from_config(config) 用信息建立新的模型对象 model = Sequential.from_config(config) 用信息建立新的Sequential模型…
Sequential 模型 API 在阅读这片文档前,请先阅读 Keras Sequential 模型指引. Sequential 模型方法 compile compile(optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None) 用于配置训练模型. 参数 optimizer: 字符串(优化器名)或者优化器对…
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型,常用层的Dense全连接层.Activation激活层和Reshape层.还有其他方法训练手写数字识别模型,可以基于pytorch实现的,<Pytorch实现基于卷积神经网络的面部表情识别(详细步骤)> 这篇就是基于pytorch实现,pytorch里也封装了mnist的数据集,实现方法应该类似…