本篇从二个方面讲解: 高级特性: 1.Spark Streaming资源动态分配 2.Spark Streaming动态控制消费速率 原理剖析,动态控制消费速率其后面存在一套理论,资源动态分配也有一套理论. 先讲理论,后面讨论. 为什么要动态资源分配和动态控制速率? Spark默认是先分配资源,然后计算:粗粒度的分配方式,资源提前分配好,有计算任务提前分配好资源: 不好的地方:从Spark Streaming角度讲有高峰值和低峰值,如果资源分配从高峰值.低峰值考虑都有大量资源的浪费. 其实当年S…
本期内容 : Spark Streaming资源动态分配 Spark Streaming动态控制消费速率 为什么需要动态处理 : Spark 属于粗粒度资源分配,也就是在默认情况下是先分配好资源然后再进行计算,粗粒度有个好处,因为资源是提前给你分配好,当有计算任务的时候直接使用就可以了, 粗粒度不好的方面就是从Spark  Streaming角度讲有高峰值.低峰值,在高与低峰值时候需要的资源是不一样的,如果资源分配按照高峰值考虑的话,在低峰值就是对资源的浪费, 随着Spark Streaming…
spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high2011/article/details/53706446 首先很感谢原文作者,看到这篇文章我少走了很多弯路,转载此文章是为了保留一份供复习用,请大家支持原作者,移步到上面的连接去看,谢谢 一.情景:当Spark streaming程序意外退出时,数据仍然再往Kafka中推送,然而由于Kafka默认…
场景 餐厅老板想要统计每个用户来他的店里总共消费了多少金额,我们可以使用updateStateByKey来实现 从kafka接收用户消费json数据,统计每分钟用户的消费情况,并且统计所有时间所有用户的消费情况(使用updateStateByKey来实现) 数据格式 {"user":"zhangsan","payment":8} {"user":"wangwu","payment":7}…
Spark 2.3.3    Kafka   2.11-1.0.2        Java  jdk1.8.0_191           Hbase 1.2.11 from pyspark import SparkConf,SparkContext from pyspark.streaming import StreamingContext from pyspark.streaming.kafka import KafkaUtils,TopicAndPartition KAFKA_BROKER…
一.问题描述:Kafka生产集群中有一台机器cdh-003由于物理故障原因挂掉了,并且系统起不来了,使得线上的spark Streaming实时任务不能正常消费,重启实时任务都不行.查看kafka topic状态,发现broker Leader出现-1的情况,如下图 二.问题分析Kafka Broker Leader 为-1,表示有partition在选举Leader的时候失败了,因此引起了消费该Topic的实时任务都出现了异常,经过排除发现挂掉的cdh-003机器正好是broker id为25…
前言 Spark Streaming 诞生于2013年,成为Spark平台上流式处理的解决方案,同时也给大家提供除Storm 以外的另一个选择.这篇内容主要介绍Spark Streaming 数据接收流程模块中与Kafka集成相关的功能. Spark Streaming 与 Kafka 集成接受数据的方式有两种: Receiver-based Approach Direct Approach (No Receivers) 我们会对这两种方案做详细的解析,同时对比两种方案优劣.选型后,我们针对Di…
4.1 初始化StreamingContext import org.apache.spark._ import org.apache.spark.streaming._ val conf = new SparkConf().setAppName(appName).setMaster(master) val ssc = new StreamingContext(conf, Seconds(1)) // 可以通过 ssc.sparkContext 来访问 SparkContext // 或者通过已…
spark streaming 对接kafka 有两种方式: 参考: http://group.jobbole.com/15559/ http://blog.csdn.net/kwu_ganymede/article/details/50314901 Approach 1: Receiver-based Approach 基于receiver的方案: 这种方式使用Receiver来获取数据.Receiver是使用Kafka的高层次Consumer API来实现的.receiver从Kafka中获…
Direct 1.简化并行读取:如果要读取多个partition,不需要创建多个输入DStream然后对它们进行union操作.Spark会创建跟Kafka partition一样多的RDD partition,并且会并行从Kafka中读取数据.所以在Kafka partition和RDD partition之间,有一个一对一的映射关系. 2.高性能:如果要保证零数据丢失,在基于receiver的方式中,需要开启WAL机制.这种方式其实效率低下,因为数据实际上被复制了两份,Kafka自己本身就有…