loj 1337】的更多相关文章

题目链接:http://lightoj.com/volume_showproblem.php?problem=1337 思路:对于搜过的区域进行标记,如果要求的点落在已经搜过的区域,那么直接取出来即可,否则,就dfs一下. #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include…
1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1573  Solved: 697[Submit][Status][Discuss] Description 给出N个点,让你画一个最小的包含所有点的圆. Input 先给出点的个数N,2<=N<=100000,再给出坐标Xi,Yi.(-10000.0<=xi,yi<=10000.0) Outpu…
题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1337 解题报告:虽然x和y的范围都是10^8,但是如果a 是大于1000的话,那么a^3就会大于10^9,这样等号的右边只有一个10 * c + 3,这个最大只能达到10^9数量级,所以,不管输入的x跟y是多少,我们只要取其中的在1到1000的区间就可以了,枚举a和b,那么c就可以得到,然后判断c的范围是不是在x到y之间,这样时间复杂度就降到了10^6. #include<cstdio…
http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1337 1337: 搞笑版费马大定理 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 625  Solved: 301[Submit][Status][Web Board] Description 费马大定理:当n>2时,不定方程an+bn=cn没有正整数解.比如a3+b3=c3没有正整数解.为了活跃气氛,我们不妨来个搞笑版:把方程改成a3+b3=c3…
1337 银行里的迷宫 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 传送门 题目描述 Description 楚楚每一次都在你的帮助下过了一关又一关(比如他开宴会).这一次,你的才华让楚楚被劫住了!(好心办了坏事啊,下次不理他了=_=) 歹徒: hehe~ 楚楚:(冷汗ing)干啥^_^!(PS:现在还笑得出来!!!) 歹徒:抢劫的说~ 楚楚:你们想干啥!!(PS:不是告诉你了,是抢劫~) 歹徒:这里是银行的陷阱,也就是一个迷宫--你要带我们离开这里--…
  CSU 1337 Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%lld & %llu   Description 费马大定理:当n>2时,不定方程an+bn=cn没有正整数解.比如a3+b3=c3没有正整数解.为了活跃气氛,我们不妨来个搞笑版:把方程改成a3+b3=c3,这样就有解了,比如a=4, b=9, c=79时43+93=793. 输入两个整数x, y, 求满足x<=a,b,c<=y的…
http://acm.hdu.edu.cn/showproblem.php?pid=1337 #include <cstdio> #include <cstring> #define maxn 200 using namespace std; int main() { int t; int a[maxn]; scanf("%d",&t); int n; while(t--) { scanf("%d",&n); ; i<=…
额... 首先,看到这道题,第一想法就是二分答案+线段树... 兴高采烈的认为我一定能AC,之后发现n是500000... nlog^2=80%,亲测可过... 由于答案是求满足题意的最大长度-最小长度最小,那么我们可以考虑将区间按长度排序 之后,因为我们是需要最大最小,所以,我们必定选择在排完序的区间上取连续的一段是最优情况(起码不会比别的差) 因此,考虑双指针扫一下就可以了... 是不是很水? 由于懒得写离散化,一开始写的动态开点线段树,我*****什么鬼?mle?!256mb开不下! lo…
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生 活不可或缺的必需品!能充上电吗?现在就试试看吧!」 SHOI 概率充电器由 \(n-1\) 条导线连通了 \(n\) 个充电元件.进行充电时,每条导线是否可以导电以 概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经…
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \sum_{i=0}^{T-1} [(i\in A\pmod P)\land(i\in B\pmod Q)] \] 换言之,就是问有多少个小于 \(T\) 的非负整数 \(x\) 满足:\(x\) 除以 \(P\) 的余数属于 \(A\) 且 \(x\) 除以 \(Q\) 的余数属于 \(B\). 输…