Python数据分析之numpy学习】的更多相关文章

原文:https://www.cnblogs.com/nxld/p/6058572.html https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/2-1-np-attributes/-----Numpy 学习 https://blog.csdn.net/u013457382/article/details/50828646-------python numpy教程 https://www.cnblogs.com/linux…
Python模块中的numpy,这是一个处理数组的强大模块,而该模块也是其他数据分析模块(如pandas和scipy)的核心. 接下面将从这5个方面来介绍numpy模块的内容: 1)数组的创建 2)有关数组的属性和函数 3)数组元素的获取--普通索引.切片.布尔索引和花式索引 4)统计函数与线性代数运算 5)随机数的生成 数组的创建 numpy中使用array()函数创建数组,array的首个参数一定是一个序列,可以是元组也可以是列表. 一维数组的创建 可以使用numpy中的arange()函数…
In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np  …
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一部分:地址是:http://www.cnblogs.com/cgzl/p/7630065.html 我一共准备了numpy技巧4篇文章,这是第二部分,剩余两部分会在10.1假期内完成. 下面就是numpy技巧的第二部分:由于直接再这里添加jupyter notebook源码的话变形比较厉害,所以还是…
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一部分:地址是:http://www.cnblogs.com/cgzl/p/7630065.html 我一共准备了numpy技巧4篇文章,这是第三部分,剩余一部分会在10.1假期内完成. 下面就是numpy技巧的第三部分:由于直接再这里添加jupyter notebook源码的话变形比较厉害,所以还是…
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   第一部分: http://www.cnblogs.com/cgzl/p/7630065.html 第二部分: http://www.cnblogs.com/cgzl/p/7630972.html 第三部分: http://www.cnblogs.com/cgzl/p/7631471.html 这是最后一部分:由于直…
5.3 Python的科学计算包 - Numpy numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算.这个库的前身是1995年就开始开发的一个用于数组运算的库.经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深度学习框架. numpy在Linux下的安装已经在5.1.2中作为例子讲过,Windows下也可以通过pip,或者到下面网址下载: Obtaining NumPy & Sci…
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Ser…
转自:http://blog.csdn.net/jinxiaonian11/article/details/53143141 在数据分析中,数据的获取是第一步,numpy.random 模块提供了非常全的自动产生数据API,是学习数据分析的第一步. 总体来说,numpy.random模块分为四个部分,对应四种功能: 1. 简单随机数: 产生简单的随机数据,可以是任何维度 2. 排列:将所给对象随机排列 3. 分布:产生指定分布的数据,如高斯分布等 4. 生成器:种随机数种子,根据同一种子产生的随…
从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设arr为numpy.ndarray的一个实例化对象 1. NumPy简介 NumPy是python运用于数据分析.科学计算最重要的库之一 由于numpy底层是用C/C++写的,在性能和速度上都有较大的提升,能用NumPy的地方就多用NumPy 官网:www.numpy.org 约定俗成的NumPy模…
Python中没有提供数组功能,虽然列表可以完成基本的数组功能,但并不是真正的数组,而且在数据量较大时,使用列表的速度回非常慢.因此,Numpy提供了真正的数组功能,以及对数据进行快速处理的函数.Numpy内置函数处理数据的速度是C语言级别的,因此,尽量使用其内置函数. Numpy安装 Numpy安装和普通的第三方库安装一样,最常用的就是利用 pip 安装: pip install numpy 如果你想做数据分析的话,还是建议安装 anaconda(Windows.macOS.Linux均可使用…
numpy库是python的一个著名的科学计算库,本文是一个quickstart. 引入:计算BMI BMI = 体重(kg)/身高(m)^2假如有如下几组体重和身高数据,让求每组数据的BMI值: weight = [65.4,59.2,63.6,88.4,68.7] height = [1.73,1.68,1.71,1.89,1.79] print weight / height ** 2 执行上面代码,报错:TypeError: unsupported operand type(s) for…
Numpy模块可以高效的处理数据,提供数组支持.很多模块都依赖他,比如:pandas.scipy.matplotlib 安装Numpy 首先到网站:https://www.lfd.uci.edu/~gohlke/pythonlibs/下查找numpy+mkl 我的Python版本是3.6.1,系统是64位 所以对应下载的包为: 下载好包之后,进入到包所在目录(例如:D:\安装包\安装包~Python\numpy-1.13.3+mkl-cp36-cp36m-win_amd64.whl) 使用如下命…
知乎:https://zhuanlan.zhihu.com/p/26514493 numoy安装:http://blog.csdn.net/wyc12306/article/details/53705489 http://blog.csdn.net/sd2558448/article/details/51234809 学习:http://blog.csdn.net/chen_shiqiang/article/details/51868115 github相关项目:https://github.c…
一.数据维度 一个数据表达一个含义,一组数据表达一个或多个含义. 数据维度概念:一组数据的组织形式,其中有一维数据.二维数据.多维数据.高维数据. 1.  一维数据 一维数据由对等关系的有序或无序数据构成,采用线性方式组织. 对应:列表.集合 #列表有序 [1,2,3,4,5] #集合无序 {1,2,3,4,5} 2.二维数据 二维数据由多个一维数据构成,是一维数据的组合形式. 对应:列表 [[1,2,3],[4,5,6]] 3.多维数据 多维数据由一维或二维数据在新维度上扩展形成. 对应:列表…
1 什么是numpy numpy是一个在Python中做科学计算的基础库,重在数值计算,也是大部分Python科学计算库的基础库,多用于大型.多维数据上执行数值计算. 在NumPy 中,最重要的对象是称为 ndarray 的N维数组类型,它是描述相同类型的元素集合,numpy所有功能几乎都以ndarray为核心展开.ndarray 中的每个元素都是数据类型对象(dtype)的对象.ndarray 中的每个元素在内存中使用相同大小的块 2 numpy数组创建 创建Numpy数组一般有三种方法: (…
本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找. 类MATLAB API 最简单的入门是从类 MATLAB API 开始,它被设计成兼容 MATLAB 绘图函数. from pylab import * from numpy import * x = linspace(0, 5, 10) y = x ** 2 figure() plot(x, y, 'r') xlabel('x') ylabel('y') title('title') 创建子图,选择绘图用的颜色与描点符号…
1.1 数据结构介绍 参考博客:http://www.cnblogs.com/nxld/p/6058591.html 1.pandas介绍 1. 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame. 2. Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其可通过索引标签的方式获取数据,还具有索引的自动对齐功能: 3. DataFrame类似于numpy中的二维数组,同样可以通用numpy数组的函数和方法,而且还具有其他灵活应用,…
参考link  https://docs.scipy.org/doc/numpy-dev/user/quickstart.html 基础 Numpy主要用于处理多维数组,数组中元素通常是数字,索引值为自然数 在Numpy中,维度被称为axes,axes的总数为rank (秩) (关于矩阵秩的概念,可以参考https://www.zhihu.com/question/21605094 与 https://www.applysquare.com/topic-cn/78QfWkiPt/) Numpy的…
一.pandas数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其可通过索引标签的方式获取数据,还具有索引的自动对齐功能:DataFrame类似于numpy中的二维数组,同样可以通用numpy数组的函数和方法,而且还具有其他灵活应用,后续会介绍到. 二.pandas数据结构之Series #使用模块之前先导入import pandas as pd from pan…
由于图片内容太多,请拖动至新标签页再查看…
当使用布尔数组直接作为下标对象或者元组下标对象中有布尔数组时,都相当于用nonzero()将布尔数组转换成一组整数数组,然后使用整数数组进行下标运算. nonzeros(a)返回数组a中值不为零的元素的下标,它的返回值是一个长度为a.ndim(数组a的轴数)的元组,元组的每个元素都是一个整数数组,其值为非零元素的下标在对应轴上的值.例如对于一维布尔数组b1,nonzero(b1)所得到的是一个长度为1的元组,它表示b1[0]和b1[2]的值不为0(False). >>> b1 = np.…
//2019.07.10python数据分析基础——numpy(数据结构基础) import numpy as np: 1.python数据分析主要的功能实现模块包含以下六个方面:(1)numpy——数据结构基础(2)Scipy——强大的数据计算(矩阵计算.信号处理.数理分析等)(3)matplotlib——可视化图形功能模块,实现数据的图形可视化)(4)pandas——基础数据分析方法(5)scikit-learn——强大的数据分析建模库,主要用于数据挖掘(6)Keras——人工神经网络,实现…
目录 简单了解数据分析 Python数据分析三剑客(Numpy,Pandas,Matplotlib) 简单使用np.array() 使用np的routines函数创建数组 ndarray N维数组对象 ndarray的基本操作 简单使用matplotlib.pyplot获取一个numpy数组,对其进行操作 学习网站 简单了解数据分析 数据分析(是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律) 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息…
Python数据分析概述 数据分析的含义与目标 统计分析方法 提取有用信息 研究.概括.总结 Python与数据分析 Python: Guido Van Rossum Christmas Holiday, 1989 特点:简介 开发效率搞 运算速度慢(相对于C++和Java) 胶水特性(集成C语言) 数据分析:numpy.scipy.matplotlib.pandas.scikit-learn.keras Python数据分析大家族 numpy(Numeric Python): 数据结构基础.是…
Numpy学习笔记 ndarray多维数组 创建 import numpy as np np.array([1,2,3,4]) np.array([1,2,3,4,],[5,6,7,8]) np.zeros(8) np.zeros(3,4) np.ones(4) np.one_like([1,2,3,4]) np.empty((2,2,2)) np.arange(10) 数组创建函数 arange ones/ones_like zeros/zeros_like empty/empty_like…
pandas and numpy notebook        最近工作交接,整理电脑资料时看到了之前的基于Jupyter学习数据分析相关模块学习笔记.想着拿出来分享一下,可是Jupyter导出来html文件,博客园不支持js注入,贴图效果实在太差劲儿.所以只贴了内容,要是有需要文件原版(pdf.md.html等)可以在评论区说一下.        本系列是数据分析相关的,打算做一个持续连载,后边便于自己系统查看和回顾. 另外,本片博客在github上有PDF版本,并且格式也很清爽,请转htt…
Numpy (Numerical Python) 高性能科学计算和数据分析的基础包: ndarray,多维数组(矩阵),具有矢量运算能力,快速.节省空间: 矩阵运算,无需循环,可以完成类似Matlab中的矢量运算: 线性代数.随机送生成: ndarray ,N维数组对象(矩阵) 所有元素必须是相同类型 ndim属性,维度个数 shape属性,各维度大小 dtype属性,数据类型 代码示例: import numpy # 生成指定维度的随机多维数据(两行三列) data = numpy.rando…
python和java,.net,php web平台交互最好使用web通信方式,不要使用Jypython,IronPython,这样的好处是能够保持程序模块化,解耦性好 python允许使用'''...'''方式来表示多行代码: >>> print(r'''Hello, ... Lisa!''') Hello, Lisa! >>> >>> print('''line1 ... line2 ... line3''') line1 line2 line3…
网上虽然有很多Python学习的教程,但是大多是围绕Python网页开发等展开.数据分析所需要的Python技能和网页开发等差别非常大,本人就是浪费了很多时间来看这些博客.书籍.所以就有了本文,希望能帮大家少走一点弯路. -----------------我是分割线-------------- 本文章主要从数据分析.机器学习(深度学习)的目的出发, 讲讲如何零基础学习Python语法.数据分析模块(Numpy.Scipy.Scikit和Pandas等)以及使用python进行机器学习(SFram…