Spark内存管理机制】的更多相关文章

Spark内存管理机制 Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优. 在执行 Spark 的应用程序时,Spark 集群会启动 Driver 和 Executor 两种 JVM 进程,前者为主控进程,负责创建 Spark 上下文,提交 Spark 作业(Job),并将作业转化为计算任务(Task),在各个 Executor 进程间协调任务的调度,后者负责在…
 Spark 内部管理机制 Spark的内存管理自从1.6开始改变.老的内存管理实现自自staticMemoryManager类,然而现在它被称之为"legacy". "Legacy" 默认已经被废弃掉了,它意味着相同的代码在1.5版本与1.6版本的输出结果将会不同.需要注意的是,出于兼容性的考虑,你依旧可以使用"legacy",通过设置spark.memory.useLegacyMode改变. 自从spark1.6版本开始,内存管理将实现自Un…
一:Tungsten中到底什么是Page? 1. 在Spark其实不存在Page这个类的.Page是一种数据结构(类似于Stack,List等),从OS层面上讲,Page代表了一个内存块,在Page里面可以存放数据,在OS中会存放很多不同的Page,当要获得数据的时候首先要定位具体是哪个Page中的数据,找到该Page之后从Page中根据特定的规则(例如说数据的offset和length)取出数据. 到底什么是Spark中的Page呢? 在阅读源码的时候,细致研究MemoryBlock.Java…
在Spark-1.6.0中,引入了一个新的参数spark.memory.userLegacyMode(默认值为false),表示不使用Spark-1.6.0之前的内存管理机制,而是使用1.6.0中引入的动态内存分配这一概念. 从SparkEnv.scala的源码中可以看到,该参数设置为true或false,主要影响到构造memoryManager的类的不同: val useLegacyMemoryManager = conf.getBoolean("spark.memory.useLegacyM…
Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优.本文旨在梳理出 Spark 内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨.本文中阐述的原理基于 Spark 2.1 版本,阅读本文需要读者有一定的 Spark 和 Java 基础,了解 RDD.Shuffle.JVM 等相关概念. 在执行 Spark 的应用程序时,Spark 集群会启动 Driver…
[Spark-core学习之八] SparkShuffle & Spark内存管理环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark-1.6 一.SparkShuffle1. SparkShuffle概念reduceByKey会将上一个RDD中的每一个key对应的所有value聚合成一个value,然后生成一个新的RDD,元素类型是<key,v…
Spark内存管理之钨丝计划 1. 钨丝计划的产生的原因 2. 钨丝计划内幕详解  一:“钨丝计划”产生的本质原因 1, Spark作为一个一体化多元化的(大)数据处理通用平台,性能一直是其根本性的追求之一,Spark基于内存迭代(部分基于磁盘迭代)的模型极大的满足了人们对分布式系统处理性能的渴望,但是有Spark是采用Scala+ Java语言编写的所以运行在了JVM平台,当然JVM是一个绝对伟大的平台,因为JVM让整个离散的主机融为了一体(网络即OS),但是JVM的死穴GC反过来限制了Spa…
本篇文章主要剖析Spark的内存管理体系. 在上篇文章 spark 源码分析之十四 -- broadcast 是如何实现的?中对存储相关的内容没有做过多的剖析,下面计划先剖析Spark的内存机制,进而进入内存存储,最后再剖析磁盘存储.本篇文章主要剖析内存管理机制. 整体介绍 Spark内存管理相关类都在 spark core 模块的 org.apache.spark.memory 包下. 文档对这个包的解释和说明如下: This package implements Spark's memory…
Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优.本文旨在梳理出 Spark 内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨.本文中阐述的原理基于 Spark 2.1 版本,阅读本文需要读者有一定的 Spark 和 Java 基础,了解 RDD.Shuffle.JVM 等相关概念. 在执行 Spark 的应用程序时,Spark 集群会启动 Driver…
1. 堆内和堆外内存规划 1.1 堆内内存 堆内内存的大小,由 Spark 应用程序启动时的 –executor-memory 或 spark.executor.memory 参数配置.Executor 内运行的并发任务共享 JVM 堆内内存,这些任务在缓存 RDD 数据和广播(Broadcast)数据时占用的内存被规划为存储(Storage)内存,而这些任务在执行 Shuffle 时占用的内存被规划为执行(Execution)内存,剩余的部分不做特殊规划,那些 Spark 内部的对象实例,或者…