Numpy学习四:numpy.power()用法】的更多相关文章

numpy.power(n, x) 对数组n的元素分别求x次方.x可以是数字,也可以是数组,但是n和x的列数要相同.…
# -*- coding: utf-8 -*- """ 主要记录代码,相关说明采用注释形势,供日常总结.查阅使用,不定时更新. Created on Mon Aug 20 23:37:26 2018   @author: Dev """   import numpy as np from datetime import datetime import random     对a,b两个列表的相同位的元素进行运算求和: # 纯Python def…
练习篇(Part 4) 41. How to sum a small array faster than np.sum? (★★☆) arr = np.arange(10) print(np.add.reduce(arr)) 运行结果:45 42. Consider two random array A and B, check if they are equal (★★☆) arr1 = np.random.randint(0,2,4).reshape(2,2) arr2 = np.rando…
# -*- coding: utf-8 -*-"""主要记录代码,相关说明采用注释形势,供日常总结.查阅使用,不定时更新.Created on Fri Aug 24 19:57:53 2018 @author: Dev""" import numpy as np import random   # 常用函数 arr = np.arange(10) print(np.sqrt(arr))    # 求平方根 print(np.exp(arr))  …
NumPy 算术函数: 1.numpy.reciprocal(arr) 返回参数逐个元素的倒数 2.numpy.power(one, two) 将第一个输入数组中的元素作为底数,计算它与第二个输入数组中相应元素的幂,即 one^two 3.numpy.mod(x1, x2) 计算输入数组中相应元素的余数,函数 numpy.remainder(x1, x2) 也产生相同的结果 import numpy as np arr = np.array([[1., 2., 3.], [4., 5., 6.]…
在数组中,用axis(轴)表示维度,对于三维数组,axis参数的取值通常有: 当axis=None时,表示把数组展开为一维数组: 当axis=0时,表示按照行(第一维)进行计算: 当axis=1时,表示按照列(第二维)进行计算: 当axis=2时,表示按照第三维度进行计算. 对NumPy的数组进行操作 ,可以修改数组的元素,对元素进行滚动,转置数组,和其他数组进行组合. 一,修改元素 数组元素的删除,追加和插入: numpy.delete(arr, obj, axis=None) numpy.a…
(1)NumPy - 矩阵库 NumPy 包包含一个 Matrix库numpy.matlib.此模块的函数返回矩阵而不是返回ndarray对象. matlib.empty()返回一个新矩阵,而不初始化元素.numpy.matlib.empty(shape, dtype, order) numpy.matlib.zeros()返回以零填充的矩阵. numpy.matlib.eye()返回一个矩阵,对角线元素为 1,其他位置为零. numpy.matlib.identity()返回给定大小的单位矩阵…
一.NumPy简介 其官网是:http://www.numpy.org/ NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了CPython的GIL(全局解释器锁),运行效率极好,是大量机器学习框架的基础库! 关于GIL请参考博客:http://www.cnblogs.com/wj-1314/p/9056555.html NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包…
NumPy学习(一) NumPy数组创建 NumPy数组属性 NumPy数学算术与算数运算 NumPy数组创建 NumPy 中定义的最重要的对象是称为 ndarray 的 N 维数组类型. 它描述相同类型的元素集合. 可以使用基于零的索引访问集合中的项目. ndarray中的每个元素在内存中使用相同大小的块. ndarray中的每个元素是数据类型对象的对象(称为 dtype). 从ndarray对象提取的任何元素(通过切片)由一个数组标量类型的 Python 对象表示. 它从任何暴露数组接口的对…
目录 Numpy学习笔记(下篇) 一.Numpy数组的合并与分割操作 1.合并操作 2.分割操作 二.Numpy中的矩阵运算 1.Universal Function 2.矩阵运算 3.向量和矩阵运算 三.Numpy中的聚合操作 四.Numpy中的arg运算 1.索引操作 2.排序和索引使用 五.Fancy Indexing 六.Numpy.array的比较 我是尾巴 Numpy学习笔记(下篇) 路漫漫其修远兮,吾将上下而求索!Numpy学习笔记(上篇) 一.Numpy数组的合并与分割操作 ​…