Pytorch 入门之Siamese网络】的更多相关文章

首次体验Pytorch,本文参考于:github and PyTorch 中文网人脸相似度对比 本文主要熟悉Pytorch大致流程,修改了读取数据部分.没有采用原作者的ImageFolder方法:   ImageFolder(root, transform=None, target_transform=None, loader=default_loader).而是采用了一种更自由的方法,利用了Dataset 和 DataLoader 自由实现,更加适合于不同数据的预处理导入工作. Siamese…
Pytorch入门随手记 什么是Pytorch? Pytorch是Torch到Python上的移植(Torch原本是用Lua语言编写的) 是一个动态的过程,数据和图是一起建立的. tensor.dot(tensor1,tensor2)//tensor各个对应位置相乘再相加 print(net)可以输出网络结构 Pytorch的动态性:网络参数可以有多个不固定的,例如: 来源:https://morvanzhou.github.io/tutorials/machine-learning/torch…
两类深度学习框架的优缺点 动态图(PyTorch) 计算图的进行与代码的运行时同时进行的. 静态图(Tensorflow <2.0) 自建命名体系 自建时序控制 难以介入 使用深度学习框架的优点 GPU 加速 (cuda) 自动求导 常用网络层的API PyTorch 的特点 支持 GPU 动态神经网络 Python 优先 命令式体验 轻松扩展 .Pytorch简介 Pytorch是Facebook 的 AI 研究团队发布了一个基于 Python的科学计算包,旨在服务两类场合: 替代numpy发…
我们按照超简单!pytorch入门教程(四):准备图片数据集准备好了图片数据以后,就来训练一下识别这10类图片的cnn神经网络吧. 按照超简单!pytorch入门教程(三):构造一个小型CNN构建好一个神经网络,唯一不同的地方就是我们这次训练的是彩色图片,所以第一层卷积层的输入应为3个channel.修改完毕如下: 我们准备了训练集和测试集,并构造了一个CNN.与之前LeNet不同在于conv1的第一个参数1改成了3 现在咱们开始训练 我们训练这个网络必须经过4步: 第一步:将输入input向前…
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验(开始训练) 经过上面两个部分,我们完成了数据生成.网络结构定义,下面我们终于可以小试牛刀,训练模型了! 首先,我们先定义一些训练时要用到的参数: EPOCH = 1000 # 就是要把数据用几遍 LR = 0.1 # 优化器的学习率,类似爬山的时候应该迈多大的步子. BATCH_SIZE=50 其次…
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验(开始训练) 终于要构建模型啦.这里我们构建的是回归模型,是用神经网络构建的,基本结构是什么样的呢? 你肯定听说过,神经网络有输入层.隐藏层.输出层,一般结构如下图所示(图片来源于网络,侵删): 所以,对比我们之前生成的数据来说,形如x=3我们想得到的输出为y=8.分别对应了上面的输入层和输出层,所以…
MNIST手写数字识别教程 要开始带组内的小朋友了,特意出一个Pytorch教程来指导一下 [!] 这里是实战教程,默认读者已经学会了部分深度学习原理,若有不懂的地方可以先停下来查查资料 目录 MNIST手写数字识别教程 1 什么是MNIST? 2 使用Pytorch实现手写数字识别 2.1 任务目的 2.2 开发环境 2.3 实现流程 3 具体代码实现 3.1 数据预处理部分 3.1.1 初始化全局变量 3.1.2 构建数据集 3.2 训练部分 3.2.1 构建模型 3.2.2 构建迭代器与损…
本节内容参照小土堆的pytorch入门视频教程.学习时建议多读源码,通过源码中的注释可以快速弄清楚类或函数的作用以及输入输出类型. Dataset 借用Dataset可以快速访问深度学习需要的数据,例如我们需要访问如下训练数据: 其中,train中存放的是训练数据集,ants和bees既是文件夹名称也是其包含的图片数据的标签,val中存放的是验证数据集. 假如我们希望自己的Dataset类可以实现如下数据访问形式: dataset = MyDataset("root_dir", &qu…
本节内容参照小土堆的pytorch入门视频教程. 现有模型使用和修改 pytorch框架提供了很多现有模型,其中torchvision.models包中有很多关于视觉(图像)领域的模型,如下图: 下面以VGG16为例将讲解如何使用以及更改现有模型: pretrained为True,返回在ImageNet上预训练过的模型:pregress为True在下载模型时会通过标准错误流输出进度条. 创建如下脚本并运行: from torchvision import models # 创建预训练过的模型,并…
我们先介绍下pytorch中的cnn网络 学过深度卷积网络的应该都非常熟悉这张demo图(LeNet): 先不管怎么训练,我们必须先构建出一个CNN网络,很快我们写了一段关于这个LeNet的代码,并进行注释: # coding=utf-8 import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Net(nn.Module): # 定义N…
1.       对比损失函数(Contrastive Loss function) 孪生架构的目的不是对输入图像进行分类,而是区分它们.因此,分类损失函数(如交叉熵)不是最合适的选择,这种架构更适合使用对比函数.对比损失函数如下: (以判断图片相似度为例)其中Dw被定义为姐妹孪生网络的输出之间的欧氏距离.Y值为1或0.如果模型预测输入是相似的,那么Y的值为0,否则Y为1.m是大于0的边际价值(margin value).有一个边际价值表示超出该边际价值的不同对不会造成损失. Siamese网络…
siamese网络 - 之前记录过: https://www.cnblogs.com/ranjiewen/articles/7736089.html - 原始的siamese network: 输入一个piar和与之对应的label,然后在输入一个batch进行训练:数据为mnist时,网络输出为2维特征,具有降维的作用! - 损失函数,相似度距离的定义等.比如将损失函数的指数形式用hige loss代替等,即: -> yi*||CNN(p1i)-CNN(p2i)||^2 + (1-yi)*ma…
Pytorch入门 简单容易上手,感觉比keras好理解多了,和mxnet很像(似乎mxnet有点借鉴pytorch),记一记. 直接从例子开始学,基础知识咱已经看了很多论文了... import torch import torch.nn as nn import torch.nn.functional as F # Linear 层 就是全连接层 class Net(nn.Module): # 继承nn.Module,只用定义forward,反向传播会自动生成 def __init__(se…
转载自:https://blog.csdn.net/qq1483661204/article/details/79039702 Learning a Similarity Metric Discriminatively, with Application to Face Verification 这个siamese文章链接. 本文主要讲解siamese网络,并用tensorflwo实现,在mnist数据集中,siamese网络和其他网络的不同之处在于,首先他是两个输入,它输入的不是标签,而是是否…
简介:    Siamese网络是一种相似性度量方法,当类别数多,但每个类别的样本数量少的情况下可用于类别的识别.分类等.传统的用于区分的分类方法是需要确切的知道每个样本属于哪个类,需要针对每个样本有确切的标签.而且相对来说标签的数量是不会太多的.当类别数量过多,每个类别的样本数量又相对较少的情况下,这些方法就不那么适用了.其实也很好理解,对于整个数据集来说,我们的数据量是有的,但是对于每个类别来说,可以只有几个样本,那么用分类算法去做的话,由于每个类别的样本太少,我们根本训练不出什么好的结果,…
Linux常用命令入门文件.网络.系统及其他操作命令.压缩 归档 文件系统 系统管理 用户管理  网络管理 finger 相关命令 netstat ping rsh telnet wget 进程管理等命令 文件压缩和有关归档的命令 compress,uncompress此命令用于压缩或解压缩数据.gzip,gunzip此命令用于压缩或解压缩文件,其中gzip是在Linux系统中经常使用的压缩和解压缩命令,很好用.rpmrpm命令用于启动RPM软件包管理操作.tartar命令用于启动文件打包程序.…
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验(开始训练) pytorch对于神经网络有很好的封装,使得我们可以快速.简单的实现神经网络框架的编写. 0. 准备数据,并对数据集进行划分.划分其实有很多方法:见数据集划分实战code # 准备数据 import random x = torch.unsqueeze(torch.linspace(0,…
PyTorch全连接ReLU网络 1.PyTorch的核心是两个主要特征: 一个n维张量,类似于numpy,但可以在GPU上运行 搭建和训练神经网络时的自动微分/求导机制 本文将使用全连接的ReLU网络作为运行示例.该网络将有一个单一的隐藏层,并将使用梯度下降训练,通过最小化网络输出和真正结果的欧几里得距离,来拟合随机生成的数据. 2.张量 2.1 热身: Numpy 在介绍PyTorch之前,将首先使用numpy实现网络. Numpy提供了一个n维数组对象,以及许多用于操作这些数组的函数.Nu…
本节内容参照小土堆的pytorch入门视频教程,主要通过查询文档的方式讲解如何搭建卷积神经网络.学习时要学会查询文档,这样会比直接搜索良莠不齐的博客更快.更可靠.讲解的内容主要是pytorch核心包中TORCH.NN中的内容(nn是Neural Netwark的缩写). 通常,我们定义的神经网络模型会继承torch.nn.Module类,该类为我们定义好了神经网络骨架. 卷积层 对于图像处理来说,我们通常使用二维卷积,即使用torch.nn.Conv2d类: 创建该类时,我们通常只需要传入以下几…
1--数据载入 |----流程: DataSet->DataLoader->调用DataLoader |----DataLoader迭代器读不到数据,无报错,一直卡住的显现: DataLoader的num_worker设置为0 解决,这个多线程读取数据不知道为什么会出现这个bug? 2--定义网络 |----与之前的一致 3--损失函数和优化器 |----损失函数: 交叉熵 |----优化器:SGD (?) 4--网络训练 |----读入数据 |----输入网络 |----获得结果,计算los…
代码如下: %matplotlib inline import torch import torch.nn as nn import torch.nn.functional as F from torchsummary import summary from torchvision import models class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1…
Tensor 1--本质上可以理解为具有不同维度的数组 2--支持的基本运算 |---创建Tensor:  x=t.tensor(x,y) x,y 表示数组的大小 , x=t.rand(x,y), x=t.ones(x,y) |---获取Tensor的大小 x.size() |---加法运算 |----普通加法(返回新的变量) x=t.tensor(a,b),y=t.tensor(a,b), x+y t.add(x,y) x.add(y) r=t.tensor(a,b), t.add(x,y,o…
关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现. 1. 稀疏编码 首先介绍一下“稀疏编码”这一概念. 早期学者在黑白风景照片中可以提取到许多16*16像素的图像碎片.而这些图像碎片几乎都可由64种正交的边组合得到.而且组合出一张碎片所需的边的数目很少,即稀疏的.同时在音频中大多数声音也可由几种基本结构组合得到.这其实就是特征的稀疏表达.即使用少量的基本特征来组合更加高层抽象的特征.在神经网络中…
我们知道,对于pytorch上的搭建动态图的代码的可读性非常高,实际上对于一些比较简单的网络,比如alexnet,vgg阅读起来就能够脑补它们的网络结构,但是对于比较复杂的网络,如unet,直接从代码脑补网络结构可能就比较吃力 tensorflow上的tensorboard进行计算图的可视化可谓是非常成熟了,那么有没有可以可视化pytorch动态图的工具呢? 实际上是有的,前两天介绍了tensorboardX,pytorch上的一个功能强大的可视化工具,他可以直接可视化网络结构 关于如何使用te…
深度学习从入门到入土,安装软件及配置环境踩了不少坑,过程中参考了多处博主给的解决方法,遂整合一下自己的采坑记录. (若遇到不一样的错误,请参考其他博主答案解决) 笔者电脑系统为win10系统,在此环境下安装 Pycharm 5.0.3 Anaconda  3 Python 3.6.9 cuda 10.1 Pytorch 1.3.1 1.安装Pycharm 5.0.3,顺带下载地址: PyCharm5.0(32/64)位下载地址: 链接:https://pan.baidu.com/s/1eTYTy…
Learning PyTorch with examples 来自这里. 本教程通过自包含的示例来介绍PyTorch的基本概念. PyTorch的核心是两个主要功能: 可在GPU上运行的,类似于numpy的多维tensor 自动区分构建的和训练的神经网络 我们将使用全连接ReLU网络作为示例.网络中包含单个隐藏层,通过最小化网络输出与真实输出之间的欧氏距离,用梯度下降训练来拟合随机数据. Tensor Warm-up: numpy 在介绍PyTorch之前,我们先用numpy来实现网络. Num…
训练分类器 目前为止,你已经知道如何定义神经网络.计算损失和更新网络的权重.现在你可能在想,那数据呢? What about data? 通常,当你需要处理图像.文本.音频或者视频数据时,你可以使用标准Python包来将数据导入到numpy 数组中.然后再将数组转换成torch.Tensor. 对于图像,可用的包有:Pillow.OpenCV 对于音频,可用的包有:scipy和librosa 对于文本,无论是基于原始的Python或Cython的加载,或是NLTK和SpaCy都是可以的. 对于视…
神经网络 来源于这里. 神经网络可以使用torch.nn包构建. 现在你对autograd已经有了初步的了解,nn依赖于autograd定义模型并区分它们.一个nn.Module包含了层(layers),和一个用来返回output的方法forward(input). 以下面这个区分数字图像的网络为例: 上图是一个简单的前馈网络.它接受输入,一个层接一层地通过几层网络,最后给出输出. 典型的神经网络训练程序如下: 定义具有一些可学习参数(或权重)的神经网络 迭代输入的数据集 通过网络处理输入 计算…
深度学习60分钟入门 来源于这里. 本文目标: 在高层次上理解PyTorch的Tensor库和神经网络 训练一个小型的图形分类神经网络 本文示例运行在ipython中. 什么是PyTorch PyTorch是由Torch7团队开发的,从名字就可以看出,它跟Torch的不同之处在于PyTorch使用了Python作为开发语言.所谓"Python first",同样说明它是一个以Python优先的深度学习框架,不仅能够实现强大的GPU加速,同时还支持动态神经网络. PyTorch既可以看做…
笔记作者:王博Kings 目录 一.整体学习的建议 1.1 如何成为Pytorch大神? 1.2 如何读Github代码? 1.3 代码能力太弱怎么办? 二.Pytorch与TensorFlow概述 2.1 什么是Pytorch? 2.1.1 Pytorch两个核心模块 2.1.2 Pytorch可视化:Visdom 2.1.3 Pytorch的优缺点 2.2 什么是TensorFlow 2.2.1 TensorFlow两个核心模块 2.2.2 TensorFlow可视化:TensorBoard…