PCA原理解释(二)】的更多相关文章

PCA在做数据处理,一般会有一个数据预处理,其中一个目标就是将取数据特征向相关性. 为什么要去特征的相关性? 因为数据如果有相关性,在学习的时候是冗余的,徒增学习成本:所以对于数据处理(也称之为白化,英文有的时候称之为sphering),白化的目的:1.实现特征之间的相关性较低:2.所有的特征具有相同的方差. 怎么去特征相关性,就是让他们的协方差为0,协方差,顾名思义,就是两组变量的协同性,如果两个变量的变化趋势是一致的,某个变量范围内,取值同样趋于增大.减少,这个时候,协方差就是正常,如果变化…
  上图讲述的两组数据,可以看到左图的数据离散度比较大,相关性比较弱,右图数据的相关性比较强:我们在使用PCA的时候,就是要将相关性强的数据进行降维,以减少处理的数据量. 那么怎么描述数据的相关性呢?使用期望,协方差以及相关系数:下面分别是左图和右图的数字特征:   其实其关键性做得是R,R说明了点间的相关性,但是想要知道R你必须要知道Sigma(X),想要知道Sigma(X)你有必须要知道期望,所以获取点间的关系,必须要求得期望和协方差. 协方差的价值有量个: 1.协方差大于零说明两套数据变化…
在对数据进行预处理时,我们经常会遇到数据的维数非常之大,如果不进行相应的特征处理,那么算法的资源开销会很大,这在很多场景下是我们不能接受的.而对于数据的若干维度之间往往会存在较大的相关性,如果能将数据的维度之间进行相应的处理,使它们在保留最大数据信息的同时降低维度之间的相关性,就可以达到降维的效果.PCA(主成分分析)便是利用这样的概念将数据映射到新的维度空间中,选择最重要的几个成分作为新空间向量的基,这样在新的坐标空间中,数据既可以保留大部分的数据信息又可以达到降维的效果.在机器学习实战中对于…
Kernel PCA 原理和演示 主成份(Principal Component Analysis)分析是降维(Dimension Reduction)的重要手段.每一个主成分都是数据在某一个方向上的投影,在不同的方向上这些数据方差Variance的大小由其特征值(eigenvalue)决定.一般我们会选取最大的几个特征值所在的特征向量(eigenvector),这些方向上的信息丰富,一般认为包含了更多我们所感兴趣的信息.当然,这里面有较强的假设:(1)特征根的大小决定了我们感兴趣信息的多少.即…
主成分分析原理与实现   主成分分析是一种矩阵的压缩算法,在减少矩阵维数的同时尽可能的保留原矩阵的信息,简单来说就是将 \(n×m\)的矩阵转换成\(n×k\)的矩阵,仅保留矩阵中所存在的主要特性,从而可以大大节省空间和数据量.最近课上学到这个知识,感觉很有意思,就在网上找一些博客进行学习,发现网上关于这方面的介绍很多,但是感觉都不太全面,单靠某一个介绍还是无法理解,当然这可能也跟个人基础有关.所以我在这里根据自己的理解写一个总结性的帖子,与大家分享同时也方便自己复习.对于主成分分析,可以参照以…
1.从几何的角度去理解PCA降维 以平面坐标系为例,点的坐标是怎么来的? 图1                                                                             图2 如上图1所示,向量OA的坐标表示为(3,2),A点的横坐标实为向量OA与单位向量(1,0)的内积得到的(也就是向量OA在单位向量(1,0)所表示的的方向上的投影的长度,正负由向量OA与投影方向的夹角决定),纵坐标同理可得.而降维的过程从几何的角度去理解,实质就可…
原文链接:深入源码分析SpringMVC底层原理(二) 文章目录 深入分析SpringMVC请求处理过程 1. DispatcherServlet处理请求 1.1 寻找Handler 1.2 没有找到Handler的处理 1.3 根据Handler寻找Adapter 1.4 拦截器的处理 1.5 Adapter处理请求 1.6 异常视图的处理 1.7 页面的跳转 2.总结 在上一篇文章中我们讲到了SpringMVC的初始化,分别初始化两个ApplicationContext,并且初始化一些处理器…
JVM 内部原理(二)- 基本概念之字节码 介绍 版本:Java SE 7 每位使用 Java 的程序员都知道 Java 字节码在 Java 运行时(JRE - Java Runtime Environment)里运行.Java 虚拟机(JVM - Java Virtual Machine)是 Java 运行时(JRE)的重要组成部分,它可以分析和执行 Java 字节码.Java 程序员不需要知道 JVM 是如何工作的.有很多应用程序和应用程序库都已开发完成,但是它们并不需要开发者对 JVM 有…
Objective-C中,ARC下的 strong和weak指针原理解释 提示:本文中所说的"实例变量"即是"成员变量","局部变量"即是"本地变量" 一.简介 ARC是自iOS 5之后增加的新特性,完全消除了手动管理内存的烦琐,编译器会自动在适当的地方插入适当的retain.release.autorelease语句.你不再需要担心内存管理,因为编译器为你处理了一切. 注意:ARC 是编译器特性,而不是 iOS 运行时特性(…
1.    相关背景 在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律.多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的工作量.更重要的是在很多情形下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性.如果分别对每个指标进行分析,分析往往是孤立的,不能完全利用数据中的信息,因此盲目减少指标会损失很多有用的信息,从而产生错误的结论. 因此需要找到一种合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损…