ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-Frequency-Scalable CNN Processor in 28nm FDSOI 单位:EAST-MICAS, KU Leuven(鲁汶大学) 本文是我觉得本次ISSCC2017 session 14中最好的一篇,给人的启示有很多,比如一款SOC可以在非常大的能效范围内调节:比如DL加速需要多少组成部件以及有几种数据复用的形式:多种bit位宽…
最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28nm for Intelligent Embedded Systems 单位:STMicroelectronics(意法半导体) 这是一篇很综合芯片SOC设计,总体架构如下: 本文采用的DSP簇作为加速阵列,包含8个DSP簇,每簇内含2个3…
最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28nm for Intelligent Embedded Systems 单位:STMicroelectronics(意法半导体) 这是一篇很综合芯片SOC设计,总体架构如下: 本文采用的DSP簇作为加速阵列,包含8个DSP簇,每簇内含2个3…
转载请注明,本文出自Bin的专栏http://blog.csdn.net/xbinworld,谢谢! DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN Processor for General-Purpose Deep Neural Networks 单位:KAIST(韩国科学技术院,电子工程-半导体系统实验室) KAIST是ISSCC的常客,一年要在上面发好几篇芯片论文,16年ISSCC上Session 14有一半的paper是出自KAIST的,只能说怎一个…
A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Processor and a CIS Integrated with Always-On Haar-Like Face Detector 单位:KAIST(韩国科学技术院)--ISSCC上大神级的机构··· DNN的加速器,面向不同的应用有着不同的能效需求:0.1W~1W,1W~5W等,不同的应用场景需要不同的架构.但是在0.1w以下的空间,目前成熟的工…
A 28nm SoC with a 1.2GHz 568nJ/Prediction Sparse Deep-Neural-Network Engine with >0.1 Timing Error Rate Tolerance for IoT Applications 单位:Harvard(哈佛大学) 这是一篇专门为DNN加速设计的芯片,在CNN加速芯片设计当道的今天也算是非常另类了~~不过能在ISSCC上发表,自然也有它的innovation,下面讲一讲. 就我当前的可以理解部分(知识结构不足…
A 288μW Programmable Deep-Learning Processor with 270KB On-Chip Weight Storage Using Non-Uniform Memory Hierarchy for Mobile Intelligence 单位:Michigan,CubeWorks(密歇根大学,CubeWorks公司) 又是一款做DNN加速的面向IOT的专用芯片,主要特点是有L1~L4四级不同速度.能耗的层次化存储.通过对全连接矩阵x向量的计算流程优化,最终可…
安装sql server 2017 Developer Edition时,安装选择“基本”,发生如下错误: 解决方法: 1.进入控制面板→程序中,找到“Microsoft visual c++2017 X64 Minimum Runtime  - 14.10.25008” 右键更改,进行修复. 注:这是网络中他人的解决方案. 2.我在我的控制面板中找不到上述程序,故采取了另一种做法:安装时的安装类型选择“自定义”.…
软考论文的六大应对策略V1.0 短短2个小时,要写3000字的文章,对习惯了用电脑敲字.办公的IT从业人员而言,难度不小.尤其,大家会提笔忘字.笔者的应试策略,就是勤学苦练,考试前的一个星期,摸清套路,写3-4篇文章,考前3-4天,多记忆点计算机专业知识点,考试前3个小时,重新默写一篇论文. 然后上考场了,直接选一个相较自己而言最为熟悉.最为贴近自己工作的论文题材,按照自己的已经准备的套路,准备的计算机专业知识点,洋洋洒洒展开来写. 如果在考场,考生自己还想怎么写,行文布局怎么组织,哪时间肯定不…
博客:blog.shinelee.me | 博客园 | CSDN 写在前面 论文状态:Published in CVIU Volume 161 Issue C, August 2017 论文地址:https://arxiv.org/abs/1606.02228 github地址:https://github.com/ducha-aiki/caffenet-benchmark 在这篇文章中,作者在ImageNet上做了大量实验,对比卷积神经网络架构中各项超参数选择的影响,对如何优化网络性能很有启发…