核密度估计,或Parzen窗,是非参数估计概率密度的一种.比如机器学习中还有K近邻法也是非参估计的一种,不过K近邻通常是用来判别样本类别的,就是把样本空间每个点划分为与其最接近的K个训练抽样中,占比最高的类别. 直方图 首先从直方图切入.对于随机变量$X$的一组抽样,即使$X$的值是连续的,我们也可以划分出若干宽度相同的区间,统计这组样本在各个区间的频率,并画出直方图.下图是均值为0,方差为2.5的正态分布.从分布中分别抽样了100000和10000个样本: 这里的直方图离散地取了21个相互无交…
http://blog.csdn.net/pipisorry/article/details/53635895 核密度估计Kernel Density Estimation(KDE)概述 密度估计的问题 由给定样本集合求解随机变量的分布密度函数问题是概率统计学的基本问题之一.解决这一问题的方法包括参数估计和非参数估计. 参数估计 参数估计又可分为参数回归分析和参数判别分析.在参数回归分析中,人们假定数据分布符合某种特定的性态,如线性.可化线性或指数性态等,然后在目标函数族中寻找特定的解,即确定回…
R语言与非参数统计(核密度估计) 核密度估计是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window). 假设我们有n个数X1-Xn,我们要计算某一个数X的概率密度有多大.核密度估计的方法是这样的: 其中K为核密度函数,h为设定的窗宽. 核密度估计的原理其实是很简单的.在我们对某一事物的概率分布的情况下.如果某一个数在观察中出现了,我们可以认为这个数的概率密度很大…
用一下程序简单实现使用parzen窗对正态分布的概率密度估计: (其中核函数选用高斯核) %run for parzen close all;clear all;clc; x=normrnd(0,1,1,10000);%从正态分布中产生样本 f=-5:0.01:5;%确定横坐标范 % N=100 h= 0.25 , 1, 4 p1=Parzen(x,0.25,10,f); p2 = Parzen(x,1,10,f); p3 = Parzen(x,4,10,f); subplot(331) plo…
1.简介 Parzen窗估计属于非参数估计.所谓非参数估计是指,已知样本所属的类别,但未知总体概率密度函数的形式,要求我们直接推断概率密度函数本身. 对于不了解的可以看一下https://zhuanlan.zhihu.com/p/88562356 下面仅对<模式分类>(第二版)的内容进行简单探讨和代码实现 2.窗函数 我们不去过多探讨什么是窗函数,只需简单理解这种估计的思想即可. 假设一种情况,你正在屋里看模式分类,结果天降正义掉下来一盆乒乓球,掉的哪里都是,你觉得这是天意,如果很多乒乓球都掉…
本文简述了以下内容: (一)生成式模型的非参数方法 (二)Parzen窗估计 (三)k近邻估计 (四)k近邻分类器(k-nearest neighbor,kNN) (一)非参数方法(Non-parametric method) 对于生成式模型(Generative model)来说,重要的地方在于类条件概率密度 $p(\textbf x|\omega_i)$ 的估计.上一篇介绍的参数方法,假定其是一个固定的分布密度形式,然后估计这个显式表达的函数中未知的参数.但这里存在两个问题:首先,假定的形式…
Seaborn是基于matplotlib的Python可视化库. 它提供了一个高级界面来绘制有吸引力的统计图形.Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,不需要经过大量的调整就能使你的图变得精致.但应强调的是,应该把Seaborn视为matplotlib的补充,而不是替代物. kdeplot(核密度估计图) 核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一.通过核密度…
对于已经得到的样本集,核密度估计是一种可以求得样本的分布的概率密度函数的方法: 通过选取核函数和合适的带宽,可以得到样本的distribution probability,在这里核函数选取标准正态分布函数,bandwidth通过AMISE规则选取 具体原理及定义:传送门 https://en.wikipedia.org/wiki/Density_estimation MATLAB 代码实现如下: % Kernel Density Estimation % 只能处理正半轴密度 function […
原创博客,转载请联系博主! 希望我思考问题的思路,也可以给大家一些启发或者反思! 问题背景: 现在我们的手上有一组没有明确规律,但是分布有明显聚簇现象的样本点,如下图所示: 图中数据集是显然是个3维的数据集,包括横纵坐标和色彩(高度),由于数据的分布比较不均匀,我们选择分布比较典型的[300,305)区间的数据点进行处理 我们的目的是找出这个数据空间中数据比较集中的部分,根据肉眼对样本的初步观察,这篇文章将讨论一个从横轴的维度对数据较密集的区域进行识别的一个轻量算法,其实也就是找出数据空间中的所…
目录 目标 框架 理论 数值实验 代码 Generative Adversarial Nets 这篇文章,引领了对抗学习的思想,更加可贵的是其中的理论证明,证明很少却直击要害. 目标 GAN,译名生成对抗网络,目的就是训练一个网络来拟合数据的分布,以前的方法,类似高斯核,Parzen窗等都可以用来估计(虽然不是很熟). GAN有俩个网络,一个是G(z)生成网络,和D(x)判别网络, 其中\(z\)服从一个随机分布,而\(x\)是原始数据, \(z\)服从一个随机分布,是很重要的一点,假设\(\h…