学习Pytorch遇到的一些问题(一)】的更多相关文章

[深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存.加载的上述三类环境不同,加载时会出错.就去研究了一下,做了实验,得出以下结论: 多/单GPU训练保存模型参数.CPU加载使用模型 #保存 PATH = 'cifar_net.pth' torch.save(net.module.state_dict(), PATH) #加载 net = Net()…
[深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% import torch print(torch.__version__) # 查看CUDA GPU是否可用 a = torch.cuda.is_available() print(a) #%% # torch.randperm x = torch.randperm(6) print(x) #%% #…
001-深度学习Pytorch环境搭建(Anaconda , PyCharm导入) 在开始搭建之前我们先说一下本次主要安装的东西有哪些. anaconda 3:第三方包管理软件. 这个玩意可以看作是一个大仓库,他里边含有很多Python的第三方开发库(也就是别人发布的,他收集起来管理).安装好这个软件之后我们便可以使用这个大仓库来安装一些我们需要的包 (人工智能需要用的包也可以使用这个来装). 同时,这个软件也可以管理我们的开发环境,让我们的环境看起来更加的简洁明了. 安装Pytorch:深度学…
参考:http://python.jobbole.com/87522/ 1.首先要安装Anaconda 1)什么是Anaconda Anaconda是Python的包管理器和环境管理器,是一个包含180+的科学包及其依赖项的发行版本.其包含的科学包包括:conda, numpy, scipy, ipython notebook等. 1.包管理 Anaconda附带了一大批常用数据科学包,它附带了conda.Python和 150 多个科学包及其依赖项.因此你可以用Anaconda立即开始处理数据…
卷积神经网络基础 本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充.步幅.输入通道和输出通道的含义.   二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据.   二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter).卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘…
过拟合.欠拟合及其解决方案 过拟合.欠拟合的概念 权重衰减 丢弃法   模型选择.过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error).通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似.计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损…
最近参加了伯禹教育的动手学习深度学习项目,现在对第一章(线性回归)部分进行一个总结. 这里从线性回归模型之从零开始的实现和使用pytorch的简洁两个部分进行总结. 损失函数,选取平方函数来评估误差,公式如下: 1)从零开始实现 首先设置真实的权重和偏差w,b.随机生成一个二维数组并由此生成对应的真实labels. num_inputs = 2 #二个自变量 num_examples = 1000 # set true weight and bias in order to generate c…
Learning PyTorch with examples 来自这里. 本教程通过自包含的示例来介绍PyTorch的基本概念. PyTorch的核心是两个主要功能: 可在GPU上运行的,类似于numpy的多维tensor 自动区分构建的和训练的神经网络 我们将使用全连接ReLU网络作为示例.网络中包含单个隐藏层,通过最小化网络输出与真实输出之间的欧氏距离,用梯度下降训练来拟合随机数据. Tensor Warm-up: numpy 在介绍PyTorch之前,我们先用numpy来实现网络. Num…
基本介绍 这周开始学习深度学习的部分知识,参考的书是<动手学深度学习>(PyTorch版),在操作过程中遇到一些小问题,记录一下问题和解决办法. PyTorch下载过慢 安装步骤 PyTorch的安装步骤相对简单,首先打开它的官网,找到下图所示的内容.第一行是选择版本,第二行是选择要在什么系统上安装,第三行如果是用Anaconda的话选Conda就可以,第四行是选择开发语言,第五行是选择CUDA的版本,这些都选好之后,会在第六行出现代码,这行代码就是用来安装的.复制这行代码,打开Anacond…
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑答疑解惑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 1 Keras卷积层 1.1 Conv2D 1.2 SeparableConv2D 1.3 Conv2DTranspose 1.3.1 去卷积的例子1 1.3.2 去卷积的例子2 2 Keras参数初始化 2.1 正态分布 2.2 均匀分布 2.3 截尾正态分布 2.…