机器人领域顶级会议 ICRA 2019 正在加拿大蒙特利尔举行(当地时间 5 月 20 日-24 日),刚刚大会公布了最佳论文奖项,来自斯坦福大学李飞飞组的研究<Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks>获得了最佳论文. 图源:https://twitter.com/animesh_garg/status/1131…
我们经常被问:机器翻译迭代了好几轮,专业翻译的饭碗都端不稳了,字幕组到底还能做什么? 对于这个问题,我们自己感受最深,却又来不及解释,就已经边感受边做地冲出去了很远,摸爬滚打了一整年. 其实,现在看来,机器翻译在通用领域的短句上,已经做得不错了,但是复杂长句.需要结合上下文语境.特定知识的翻译上,效果还远远不能让人满意. 人工智能领域的翻译,就属于后者.它不仅需要数学.编程知识打底,对特定专业表达进行界定,还需要适时结合上下文语境理解和延伸. 这样一来,你也许能够理解,忠于原意又有人情味的翻译很…
https://mp.weixin.qq.com/s/i1uwZALu1BcOq0jAMvPdBw 看点:李飞飞正式回归斯坦福,新任谷歌云AI总帅还是个教授,不过这次是全职. 智东西9月11日凌晨消息,谷歌云CEO Diane Greene刚刚在其官方博客上公布了一则重磅新闻,确认来自卡内基梅隆大学的计算机科学院院长Andrew Moore教授将在2018年底接任李飞飞的谷歌云AI负责人职位,而李飞飞也将正式回归斯坦福大学当教授. 此前,李飞飞(Fei-Fei Li)所担任的角色是谷歌云AI首席…
目前,深度学习和深度强化学习已经在实践中得到了广泛的运用.资源型博客sky2learn整理了15个深度学习和深入强化学习相关的在线课程,其中包括它们在自然语言处理(NLP),计算机视觉和控制系统中的应用教程. 这些课程涵盖了神经网络,卷积神经网络,循环网络和其变体,训练深度网络的困难,无监督表示学习,深度信念网络,深玻尔兹曼机器,深度Q学习,价值函数估计和优化以及蒙特卡洛树搜索等多种算法的基础知识. 吴恩达:深度学习专项 这系列课程侧重于讲解深度学习的基础和在不同领域的运用方式,如医疗健康,自动…
本文是个人在学习<CS231n 斯坦福李飞飞视觉识别课程>的学习笔记. 第一讲:课程简介 课时1 计算机视觉概述 课时2 计算机视觉历史背景 课时3 课程后勤 选读书籍<DeepLearning> 软件包: TensorFlow, Torch, PyTorch 先修条件:Python, NumPy, 微积分, 线性代数, 计算机图像, 机器学习, 课程网站: http://cs231n.stanford.edu/(作业,资源) 第二讲:图像分类 课时4 数据驱动方法 作业一: 1.…
简介: 数据库将面临怎样的变革?云原生数据库与数据仓库有哪些独特优势?在日前的 DTCC 2020大会上,阿里巴巴集团副总裁.阿里云数据库产品事业部总裁.ACM杰出科学家李飞飞就<云原生分布式数据库与数据仓库系统点亮数据上云之路>进行了精彩分享. 云计算时代,云原生分布式数据库和数据仓库开始崛起,提供弹性扩展.高可用.分布式等特性. 数据库将面临怎样的变革?云原生数据库与数据仓库有哪些独特优势?在日前的 DTCC 2020大会上,阿里巴巴集团副总裁.阿里云数据库产品事业部总裁.ACM杰出科学家…
论文标题:Prototypical Contrastive Learning of Unsupervised Representations 论文方向:图像领域,提出原型对比学习,效果远超MoCo和SimCLR 论文来源:ICLR2021 论文链接:https://arxiv.org/abs/2005.04966 论文代码:https://github.com/salesforce/PCL Part1 概述 本文提出了一个将对比学习与聚类联系起来的无监督表示学习方法:Prototypical C…
一.基本信息 论文题目:<DeepWalk: Online Learning of Social Representations>发表时间:  KDD 2014论文作者:  Bryan Perozzi.Rami Al-Rfou.Steven Skiena论文地址:  https://dl.acm.org/citation.cfm?id=2623732 二.前言 普通的邻接矩阵在存储的关系很多时,纬度将变得很高,而进行矩阵分解是一个相当费时复杂的过程,因此通过矩阵分解的方法进行网络的表示学习,目…
论文标题:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis 论文链接:http://arxiv.org/abs/1905.05812 文章同时使用视觉.语音.和文本(语言)信息进行情感分析,通过增加视觉和语音信号,补足了一些无法通过文本来进行判断的情况,例如下图中,第一句话需要图像才能判断为负面情绪,第二句话同时语音和图像才能判断为负面情绪. 一.模型架构 模型整体思路 1.首先,每一个模…
论文标题:Bootstrap Your Own Latent A New Approach to Self-Supervised Learning 论文方向:图像领域 论文来源:NIPS2020 论文链接:https://arxiv.org/abs/2006.07733 论文代码:https://github.com/deepmind/deepmind-research/tree/master/byol 1 介绍 BYOL,全称叫Bootstrap Your Own Latent,它在迭代的过程…