这次来训练一个基于CNN的语音识别模型.训练完成后,我们将尝试将此模型用于Hotword detection. 人类是怎样听懂一句话的呢?以汉语为例,当听到"wo shi"的录音时,我们会想,有哪两个字是读作"wo shi"的,有人想到的是"我是",也有人觉得是"我市".我们可以通过"wo shi"的频率的特征,匹配到一些结果,我们这次要训练的模型,也是基于频率特征的CNN模型.单纯的基于频率特征的识别有很…
大前端技术系列:TWA技术+TensorFlow.js => 集成原生和AI功能的app ( 本文内容为melodyWxy原作,git地址:https://github.com/melodyWxy/twa-tf.js , 首发于博客园 散场丶丶:https://www.cnblogs.com/sanchang/p/11818604.html ) 什么是TWA 简单来讲,TWA(Trusted Web Activity 可信任的网络应用)即: 基于Chrome Custom Tabs,利用谷歌浏览…
将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as np import os import tensorflow as tf from PIL import Image classes = ["aeroplane", "bicycle", "bird", "boat", &quo…
自己搞了20万张图片100个分类,tensorflow训练23万次后...... 我自己把训练用的一张图片,弄乱之后做了一个预测 100个汉字,20多万张图片,tensorflow CNN训练23万次它自己停止训练了.预测的时候类似这样   我故意搞的缺边缺角的都能正常识别 预测结果类别是70,恰恰就是我其中一个训练集中的汉字 "亚" 准确率看样子还是不错的,就是不知道能有什么具体的应用了…
tensorflow训练了10万次,运行完毕,对这个word2vec终于有点感觉了 感觉它能找到词与词之间的关系,应该可以用来做推荐系统.自动摘要.相关搜索.联想什么的 tensorflow1.1.0 + python3.6 + win10 + i7 + 12G内存  数据样本大小95.3MB,训练时间大约20分钟 结果如下:…
装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读这个快速上手教程. 当我们开始学习编程的时候,第一件事往往是学习打印"Hello World".就好比编程入门有Hello World,机器学习入门…
tensorflow训练验证码识别模型的样本可以使用captcha生成,captcha在linux中的安装也很简单: pip install captcha 生成验证码: # -*- coding: utf-8 -*- from captcha.image import ImageCaptcha # pip install captcha import numpy as np from PIL import Image import random import cv2 import os # 验…
title: TensorFlow训练MNIST报错ResourceExhaustedError date: 2018-04-01 12:35:44 categories: deep learning tags: MNIST TensorFlow 在最后测试的一步报错: ResourceExhaustedError (see above for traceback): OOM when allocating tensor 搜索了一下才知道是GPU显存不足(emmmm....)造成的,可以把最后测…
ZC:自己训练 的文章 貌似 能度娘出来很多,得 自己弄过才知道哪些个是坑 哪些个好用...(在CSDN文章的右侧 也有列出很多相关的文章链接)(貌似 度娘的关键字是"TensorFlow 自己训练") 1.完整实现利用tensorflow训练自己的图片数据集 - 故沉的博客 - CSDN博客.html(https://blog.csdn.net/jesmine_gu/article/details/81155787) ZC:该作者 提供了 自己的代码(github) 2.猫狗 用自己…
我们常说的 AI 通用能力往往不针对具体的行业应用,而是主要解决日常或者泛化的问题,很多技术企业给出的方案是通用式的,比如通用文字识别,无论识别身份证.驾驶证.行驶证等,任何一张图片训练后的模型都会尽可能去识别文字内容. 正常 AI 模型开发过程包括数据标注,模型训练,模型部署几个流程,但是不同应用.不同企业业务场景的不同,在开发需求上会有差异,包括业务方向.预算.发展阶段.技术基础等差异,都会导致企业需要不同的技术细节和部署方式.在具体行业领域中,会增加技术选型.模型匹配等环节.这个时候,高效…