五、Pandas玩转数据】的更多相关文章

Series的简单运算 import numpy as np import pandas as pd s1=pd.Series([1,2,3],index=['A','B','C']) print(s1) 结果: A 1 B 2 C 3 dtype: int64 s2=pd.Series([4,5,6,7],index=['B','C','D','E']) print(s2) 结果: B 4 C 5 D 6 E 7 dtype: int64 print(s1+s2)#对应的index相加,NaN…
接着前天的豆瓣书单信息爬取,这一篇文章看一下利用pandas完成对数据的存储. 回想一下我们当时在最后得到了六个列表:img_urls, titles, ratings, authors, details. 我们如何对这些数据进行存储:让每一本书的每一个元素可以一一对应起来,形成第一本书的书名.作者等等在一起,下一本书的书名.作者在一起. 这里我们接触一个新的数据存储形式:pandas库里的DataFrame. pandas.DataFrame() DataFrame是一个表格型的数据结构,它含…
将pandas的DataFrame数据写入MySQL数据库 + sqlalchemy import pandas as pd from sqlalchemy import create_engine ##将数据写入mysql的数据库,但需要先通过sqlalchemy.create_engine建立连接,且字符编码设置为utf8,否则有些latin字符不能处理 yconnect = create_engine('mysql+mysqldb://root:password@localhost:330…
从http://www.pm25.com/shenzhen.html抓取北京,深圳,上海,广州,成都的pm2.5指数,并按照空气质量从优到差排序,保存在txt文档里 代码如下: #coding=utf-8 from selenium import webdriver from time import sleep class PM: def __init__(self): self.dr = webdriver.Chrome() self.pm25_info = self.get_pm25_inf…
iOS五种本地缓存数据方式   iOS本地缓存数据方式有五种:前言 1.直接写文件方式:可以存储的对象有NSString.NSArray.NSDictionary.NSData.NSNumber,数据全部存放在一个属性列表文件(*.plist文件)中. 2.NSUserDefaults(偏好设置),用来存储应用设置信息,文件放在perference目录下. 3.归档操作(NSkeyedArchiver),不同于前面两种,它可以把自定义对象存放在文件中. 4.coreData:coreData是苹…
概要 准备工作 检查数据 处理缺失数据 添加默认值 删除不完整的行 删除不完整的列 规范化数据类型 必要的转换 重命名列名 保存结果 更多资源 Pandas 是 Python 中很流行的类库,使用它可以进行数据科学计算和数据分.他可以联合其他数据科学计算工具一块儿使用,比如,SciPy,NumPy 和 Matplotlib,建模工程师可以通过创建端到端的分析工作流来解决业务问题. 虽然我们可以 Python 和数据分析做很多强大的事情,但是我们的分析结果的好坏依赖于数据的好坏.很多数据集存在数据…
概要 了解数据 分析数据问题 清洗数据 整合代码 了解数据 在处理任何数据之前,我们的第一任务是理解数据以及数据是干什么用的.我们尝试去理解数据的列/行.记录.数据格式.语义错误.缺失的条目以及错误的格式,这样我们就可以大概了解数据分析之前要做哪些“清理”工作. 本次我们需要一个 patient_heart_rate.csv (链接:https://pan.baidu.com/s/1geX8oYf 密码:odj0)的数据文件,这个数据很小,可以让我们一目了然.这个数据是 csv 格式.数据是描述…
预览数据 这次我们使用 Artworks.csv ,我们选取 100 行数据来完成本次内容.具体步骤: 导入 Pandas 读取 csv 数据到 DataFrame(要确保数据已经下载到指定路径) DataFrame 是 Pandas 内置的数据展示的结构,展示速度很快,通过 DataFrame 我们就可以快速的预览和分析数据.代码如下: import pandas as pd ​ df = pd.read_csv('../data/Artworks.csv').head(100) df.hea…
Python利用pandas处理Excel数据的应用   最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做自动化测试的时候,如果涉及到数据的读取和存储,那么而利用pandas就会非常高效,基本上3行代码可以搞定你20行代码的操作!该教程仅仅限于结合柠檬班的全栈自动化测试课程来讲解下pandas在项目中的应用,这仅仅只是冰山一角,希望大家可以踊跃的去尝试和探索! 一.安装环境: 1:pandas依赖处理E…
import numpy as np import pandas as pd 数据加载 首先,我们需要将收集的数据加载到内存中,才能进行进一步的操作.pandas提供了非常多的读取数据的函数,分别应用在各种数据源环境中,我们常用的函数为: read_csv read_table read_sql q 1.1 加载csv数据 header 表标题,可以使用整形和或者整形列表来指定标题在哪一行,None是无标题,默认infer首行 sep 控制数据之间的分隔符号.read_csv方法,默认为逗号(,…