Spark job server原理初探】的更多相关文章

Spark job server是一个基于Spark的服务系统,提供了管理SparkJob,context,jar的RestFul接口. 专注标注原文链接 http://www.cnblogs.com/shenh062326/p/6193375.html 使用说明 参考 http://debugo.com/spark-jobserver/ 原理介绍 服务端JobServer首先启动,它会启动一个名叫WebApi的HttpService服务,它提供下面这几个Routes val myRoutes…
[From]https://blog.csdn.net/u013332124/article/details/88350345 Spark History Server 是spark内置的一个http服务,通过sbin/sbin/start-history-server.sh启动.History Server启动后,会监听一个端口,同时启动两个定时任务线程,分别用来解析eventLog日志文件和清理过期的eventLog日志文件.Spark History Server启动后,我们可以直接在浏览…
Spark history Server产生背景 以standalone运行模式为例,在运行Spark Application的时候,Spark会提供一个WEBUI列出应用程序的运行时信息:但该WEBUI随着Application的完成(成功/失败)而关闭,也就是说,Spark Application运行完(成功/失败)后,将无法查看Application的历史记录: Spark history Server就是为了应对这种情况而产生的,通过配置可以在Application执行的过程中记录下了日…
在运行Spark应用程序的时候,driver会提供一个webUI给出应用程序的运行信息,但是该webUI随着应用程序的完成而关闭端口,也就是 说,Spark应用程序运行完后,将无法查看应用程序的历史记录.Spark history server就是为了应对这种情况而产生的,通过配置,Spark应用程序在运行完应用程序之后,将应用程序的运行信息写入指定目录,而Spark history server可以将这些运行信息装载并以web的方式供用户浏览. 要使用history server,对于提交应用…
Apache Spark的工作原理 1 Why Apache Spark 2 关于Apache Spark 3 如何安装Apache Spark 4 Apache Spark的工作原理 5 spark弹性分布式数据集 6 RDD持久性 7 spark共享变量 8 Spark SQL 9 Spark Streaming 原文链接:http://blogxinxiucan.sh1.newtouch.com/2017/07/23/Apache-Spark%E7%9A%84%E5%B7%A5%E4%BD…
MXNet之ps-lite及parameter server原理 ps-lite框架是DMLC组自行实现的parameter server通信框架,是DMLC其他项目的核心,例如其深度学习框架MXNET的分布式训练就依赖ps-lite的实现. parameter server原理 在机器学习和深度学习领域,分布式的优化已经成了一种先决条件,因为单机已经解决不了目前快速增长的数据与参数带来的问题.现实中,训练数据的数量可能达到1TB到1PB之间,而训练过程中的参数可能会达到\(10^9\)到\(1…
Python源代码剖析笔记3-Python执行原理初探 本文简书地址:http://www.jianshu.com/p/03af86845c95 之前写了几篇源代码剖析笔记,然而慢慢觉得没有从一个宏观的角度理解python执行原理的话,从底向上分析未免太easy让人疑惑.不如先从宏观上对python执行原理有了一个基本了解,再慢慢探究细节.这样或许会好非常多. 这也是近期这么久没有更新了笔记了,一直在看源代码剖析书籍和源代码.希望能够从一个宏观层面理清python执行原理.人说读书从薄读厚,再从…
本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质是什么,以及 Spark 在性能调优部份的要点,这两点让在进入性能调优之前都是一个至关重要的问题,它的本质限制了我们调优到底要达到一个什么样的目标或者说我们是从什么本源上进行调优.希望这篇文章能为读者带出以下的启发: 了解大数据性能调优的本质 了解 Spark 性能调优要点分析 了解 Spark 在…
spark 生态及运行原理 Spark 特点 运行速度快 => Spark拥有DAG执行引擎,支持在内存中对数据进行迭代计算.官方提供的数据表明,如果数据由磁盘读取,速度是Hadoop MapReduce的10倍以上,如果数据从内存中读取,速度可以高达100多倍. 适用场景广泛 => 大数据分析统计,实时数据处理,图计算及机器学习 易用性 => 编写简单,支持80种以上的高级算子,支持多种语言,数据源丰富,可部署在多种集群中 容错性高.Spark引进了弹性分布式数据集RDD (Resil…
文章正文 通过文章“Spark 核心概念RDD”我们知道,Spark的核心是根据RDD来实现的,Spark Scheduler则为Spark核心实现的重要一环,其作用就是任务调度.Spark的任务调度就是如何组织任务去处理RDD中每个分区的数据,根据RDD的依赖关系构建DAG,基于DAG划分Stage,将每个Stage中的任务发到指定节点运行.基于Spark的任务调度原理,我们可以合理规划资源利用,做到尽可能用最少的资源高效地完成任务计算. 1.分布式运行框架 Spark可以部署在多种资源管理平…