PCA降维—降维后样本维度大小】的更多相关文章

之前对PCA的原理挺熟悉,但一直没有真正使用过.最近在做降维,实际用到了PCA方法对样本特征进行降维,但在实践过程中遇到了降维后样本维数大小限制问题. MATLAB自带PCA函数:[coeff, score, latent, tsquared] = pca(X) 其中,X是n*p的,n是样本个数,p是特征维数. (1)coeff矩阵是返回的转换矩阵,就是把原始样本转换到新空间中的转换矩阵. (2)score是原始样本矩阵在新样本空间中的表示,也就是原始样本乘上转换矩阵,但是还不是直接乘,要减去一…
PCA要做的事降噪和去冗余,其本质就是对角化协方差矩阵. 一.预备知识 1.1 协方差分析 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来.网上值得参考的资料也不多,这里用一个例子说明协方差矩阵是怎么计算出来的吧. 用matlab计算这个例子 z=[1,2;3,6;4,2;5,2] cov(z) ans = 2.9167 -0.3333 -0.3333 4.0000 可以看出,matlab计算协方差过程…
&*&:2017/6/16update,最近几天发现阅读这篇文章的朋友比较多,自己阅读发现,部分内容出现了问题,进行了更新. 一.什么是PCA:摘用一下百度百科的解释 PCA(Principal Component Analysis),主成分分析,是一种统计方法,通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. 二.PCA的用途及原理: 用途:数据降维 原理:线性映射(或线性变换),简单的来说就是将高维空间数据投影到低维空间上,那么在数据分析上,…
PCA主成分分析 import numpy as np import pandas as pd import matplotlib.pyplot as plt # 用鸢尾花数据集 展示 降维的效果 from sklearn.datasets import load_iris iris = load_iris() data = iris.data # 特征值 target = iris.target # 目标值 # 绘制平面散点图 plt.scatter(data[:,0],data[:,1],c…
目录 主成分分析(PCA)——以葡萄酒数据集分类为例 1.认识PCA (1)简介 (2)方法步骤 2.提取主成分 3.主成分方差可视化 4.特征变换 5.数据分类结果 6.完整代码 总结: 1.认识PCA (1)简介 数据降维的一种方法是通过特征提取实现,主成分分析PCA就是一种无监督数据压缩技术,广泛应用于特征提取和降维. 换言之,PCA技术就是在高维数据中寻找最大方差的方向,将这个方向投影到维度更小的新子空间.例如,将原数据向量x,通过构建  维变换矩阵 W,映射到新的k维子空间,通常().…
卷积神经网络的应用:卷积神经网络使用卷积提取图像的特征来进行图像的分类和识别       分类                        相似图像搜索                                  目标识别                               语义分割 卷积神经网络与神经网络的形状对比, 卷积是有厚度的 卷积在提取特征时的图像变化,从刚开始较低水平的特征图,到最后较高水平的特征图的变化,原先提取的是图片的特征,后面提取到的是一些高级的分类特征 1.…
说说Delphi XE2及以后的版本编译后的程序大小问题. 其实最终得到的程序并不大,由于编译器的变化,XE2里Debug版程序比Release版程序大很多,要减小程序体积,就使用Release版.下面给出稍微具体点的信息(都是空程序): Win32 Debug版 VCL程序大约6M           FireMonkey程序大约8M Win32 Release版 VCL程序大约1.5M       FireMonkey程序大约3M Win64 Debug版 VCL程序大约7M        …
运用PCA对高维数据进行降维,有一下几个特点: (1)数据从高维空间降到低维,因为求方差的缘故,相似的特征会被合并掉,因此数据会缩减,特征的个数会减小,这有利于防止过拟合现象的出现.但PCA并不是一种好的防止过拟合的方法,在防止过拟合的时候,最好是对数据进行正则化: (2)使用降维的方法,使算法的运行速度加快: (3)减少用来存储数据的内存空间: (4)从x(i)到z(i)的映射过程中,对训练数据进行降维,然后对测试数据或验证数据进行降维:…
Principal Component Analysis 算法优缺点: 优点:降低数据复杂性,识别最重要的多个特征 缺点:不一定需要,且可能损失有用的信息 适用数据类型:数值型数据 算法思想: 降维的好处: 使得数据集更易使用 降低很多算法计算开销 去除噪声 使得结果易懂 主成分分析(principal component analysis,PCA)的思想是将数据转换到新的坐标系,这个坐标系的选择是由数据本身决定的,第一维是原始数据中方差最大的方向,第二个是与第一维正交且方差最大的,一直重复..…
对于维数比较多的数据,首先需要做的事就是在尽量保证数据本质的前提下将数据中的维数降低.降维是一种数据集预处理技术,往往在数据应用在其他算法之前使用,它可以去除掉数据的一些冗余信息和噪声,使数据变得更加简单高效,从而实现提升数据处理速度的目的,节省大量的时间和成本.降维也成为了应用非常广泛的数据预处理方法.目前处理降维的技术有很多种,如SVD奇异值分解,主成分分析(PCA),因子分析(FA),独立成分分析(ICA)等. 以下是使用主成分分析(PCA)进行降维: import matplotlib.…