[AHOI2001]多项式乘法】的更多相关文章

传送门 这题就是普及暴力模拟板子FFT板子,只要把多项式读入进来FFT一下就好了(不会的右转P3803) 重点是读入,我本以为这个字符串里到处都有空格,这里提供一种简单思路: 因为里面可能有空格,所以用while和scanf读入连续的一段字符,如果读到数字就把这个系数(以及可能有的a的次数)抠出来,放在对应的多项式里 如果读到),如果这是第奇数个,那么后面的系数放到第二个多项式里,否则进行FFT并输出,并且让后面的系数放到第一个多项式里 注意多组数据要清空某些变量,数组 #include<bit…
\([Link](https://www.luogu.org/problemnew/show/P2553)\) \(\color{red}{\mathcal{Description}}\) 给出两个多项式的乘积表达式,请求出它的结果. 啥?乘积表达式?哦,就是酱紫的: \((4a^3 + 6a^2 + a ^ 1 + 3) * (3a^2 + a ^ 1 + 2)\) 嗯,那么它的结果也要写成这样\(qwq\)但是在这里就不举例子了\(qwq\) \(\color{red}{\mathcal{S…
题目链接 简单处理一下输入,\(fft\)模板题. #include <cstdio> #include <cmath> #include <algorithm> #include <cstring> #define re register using namespace std; const int MAXN = 1000010; const double PI = M_PI; struct complex{ double x, y; complex(do…
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多项式的 0 到 n 次项前的系数. 第三行 m+1 个整数,分别表示第一个多项式的 0 到 m 次项前的系数. 输出 一行 n+m+1 个整数,分别表示乘起来后的多项式的 0 到 n+m 次项前的系数. 输入示例 输出示例 数据规模及约定 0≤n,m≤105,保证输入中的系数大于等于 0 且小于等于…
卷积 给定向量:, 向量和: 数量积(内积.点积): 卷积:,其中 例如: 卷积的最典型的应用就是多项式乘法(多项式乘法就是求卷积).以下就用多项式乘法来描述.举例卷积与DFT. 关于多项式 对于多项式,系数为,设最高非零系数为,则其次数就是,记作.任何大于的整数都是的次数界. 多项式的系数表达方式:(次数界为). 则多项式的系数向量即为. 多项式的点值表达方式:,其中各不相同,. 离散傅里叶变换(DFT) 离散傅里叶变换(Discrete Fourier Transform,DFT).在信号处…
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.net/leo_h1104/article/details/51615710 题解 不写点什么也不好,我就简单的说一下吧. 我们首先得知道DFT(离散傅里叶变换)和IDFT(逆离散傅里叶变换). 一个多项式有很两种表示方法: 法一:\(f(x)=\sum_{i=0}^n A_i*x^i\) 法二:图像…
[Uoj34]多项式乘法(NTT,FFT) 题面 uoj 题解 首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西 直接贴一下代码吧.. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<set> #include<map&g…
[吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的文字好像有点多呀qwq啊话痨是真的qwq) [正题] 一些预备知识(有了解的就可以直接跳啦,mainly from 算导) fft的话,用来解决与多项式乘法有关的问题 关于多项式 一个以x为变量的多项式定义在一个代数域$F$上,将函数$A(x)$表示为形式和: $A(x) = \sum\limits…
------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法     一般应用最广泛的表示方式     用A(x)表示一个x-1次多项式,a[i]为$ x^i$的系数,则A(x)=$ \sum_0^{n-1}$ a[i] * $ x^i$ 仅利用这种方式求多项式乘法复杂度为O($ n^2$),不够优秀2.点值表示法     将n个互不相同的值$ x_0$...$…
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_…