kd树和knn算法的c语言实现】的更多相关文章

基于kd树的knn的实现原理可以参考文末的链接,都是一些好文章. 这里参考了别人的代码.用c语言写的包括kd树的构建与查找k近邻的程序. code: #include<stdio.h> #include<stdlib.h> #include<math.h> #include<time.h> typedef struct{//数据维度 double x; double y; }data_struct; typedef struct kd_node{ data_…
最近研究KNN,找到了一些优秀的源码,贴出来,做个笔记吧. #include<stdio.h> #include<stdlib.h> #include<math.h> #include<time.h> typedef struct{//数据维度 double x; double y; }data_struct; typedef struct kd_node{ data_struct split_data;//数据结点 int split;//分裂维 stru…
近邻分类 简言之,就是将未标记的案例归类为与它们最近相似的.带有标记的案例所在的类. 应用领域: 1.计算机视觉:包含字符和面部识别等 2.推荐系统:推荐受众喜欢电影.美食和娱乐等 3.基因工程:识别基因数据的模式,用于发现特定的蛋白质或疾病等 K最近邻(kNN,k-NearestNeighbor)算法 K最近邻分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻. kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别(类似投票)…
姊妹篇: 深入浅出KNN算法(一) 原理介绍 上次介绍了KNN的基本原理,以及KNN的几个窍门,这次就来用sklearn实践一下KNN算法. 一.Skelarn KNN参数概述 要使用sklearnKNN算法进行分类,我们需要先了解sklearnKNN算法的一些基本参数,那么这节就先介绍这些内容吧. def KNeighborsClassifier(n_neighbors = 5, weights='uniform', algorithm = '', leaf_size = '30', p =…
K近邻(K-nearst neighbors,KNN)是一种基本的机器学习算法,所谓k近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.比如:判断一个人的人品,只需要观察与他来往最密切的几个人的人品好坏就可以得出,即"近朱者赤,近墨者黑":KNN算法既可以应用于分类应用中,也可以应用在回归应用中. KNN在做回归和分类的主要区别在于最后做预测的时候的决策方式不同.KNN在分类预测时,一般采用多数表决法:而在做回归预测时,一般采用平均值法. KNN算法原理…
构建算法 k-d树是一个二叉树,每个节点表示一个空间范围.表1给出的是k-d树每个节点中主要包含的数据结构. 表1 k-d树中每个节点的数据类型 域名 数据类型 描述 Node-data 数据矢量 数据集中某个数据点,是n维矢量(这里也就是k维) Range 空间矢量 该节点所代表的空间范围 split 整数 垂直于分割超平面的方向轴序号 Left k-d树 由位于该节点分割超平面左子空间内所有数据点所构成的k-d树 Right k-d树 由位于该节点分割超平面右子空间内所有数据点所构成的k-d…
k-d树 在计算机科学里,k-d树( k-维树的缩写)是在k维欧几里德空间组织点的数据结构.k-d树可以使用在多种应用场合,如多维键值搜索(例:范围搜寻及最邻近搜索).k-d树是空间二分树(Binary space partitioning )的一种特殊情况.[1] 可以看到,KD树是基于欧式距离度量的. 简介: k-d树是每个节点都为k维点的二叉树.所有非叶子节点可以视作用一个超平面把空间分区成两个半空间( Half-space[失效链接] ).节点左边的子树代表在超平面左边的点,节点右边的子…
目录 kd树 一.kd树学习目标 二.kd树引入 三.kd树详解 3.1 构造kd树 3.1.1 示例 3.2 kd树搜索 3.2.1 示例 四.kd树流程 4.1 输入 4.2 输出 4.3 流程 五.kd树优缺点 5.1 优点 5.2 缺点 六.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ kd树 k近邻算法中讲到它有一个较为致命的缺点就是每个实例到未来新…
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据.但是,最近邻算法明显是存在缺陷的,比如下面的例子:有一个未知形状(图中绿色的圆点),如何判断它是什么形状? 显然,最近邻算法的缺陷--对噪声数据过于敏感,为了解决这个问题,我们可…
1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居. 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居),这K个实例的多数属于某个类,就把该输入实例分类到这个类中. 如上图所示,有两类不同的样本数据,分别用蓝色的…
K近邻(KNN)的核心算法是kd树,转载如下几个链接: [量化课堂]一只兔子帮你理解 kNN [量化课堂]kd 树算法之思路篇 [量化课堂]kd 树算法之详细篇…
KD树算法是先对数据集进行建模,然后搜索最近邻,最后一步是预测. KD树中的K指的是样本特征的维数. 一.KD树的建立 m个样本n维特征,计算n个特征的方差,取方差最大的第k维特征作为根节点.选择第k维特征的中位数作为切分点,小于中位数的放左子树,大于中位数的放右子树,递归生成. 举例 有二维样本6个,{(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)}: 1.找根节点,6个数据点在x.y维度上的方差分别是6.97,5.37,x维度方差最大,因此选择x维进行键树: 2.找切…
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:http://weibo.com/1580904460/z1PosdcKj:2.神经网络:http://weibo.com/1580904460/yBmhfrOGl:3.编程艺术第28章:http://weibo.com/1580904460/z4ZGFiDcY.你看到,blog内…
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时…
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任…
问题 给定一系列的点.和一个矩形.求矩形中包括的点的数量. 解答 这个问题能够通过建立矩阵来进行求解.首先将一个空间切割成矩阵,将点放置在相应的格子中.再计算矩形覆盖的格子.再推断格子中的点是否包括在矩形中 这样的方法的问题是,可能这些点全都集中在一个格子中. 这样的情况下算法的效率比較低. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2FpcGVpY2hhbzI=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCM…
转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/47606159 继上一篇中已经介绍了SIFT原理与C源代码剖析,最后得到了一系列特征点,每一个特征点相应一个128维向量.假如如今有两副图片都已经提取到特征点,如今要做的就是匹配上相似的特征点. 相似性查询有两种基本方式:1.范围查询:即给点查询点和查询阈值,从数据集中找出全部与查询点距离小于阈值的点. 2.K近邻查询:给点查询点及正整数K,从数据集中找到与查询点近期的K个数据…
K近邻法 1基本概念 K近邻法,是一种基本分类和回归规则.根据已有的训练数据集(含有标签),对于新的实例,根据其最近的k个近邻的类别,通过多数表决的方式进行预测. 2模型相关 2.1 距离的度量方式 定义距离 (1)欧式距离:p=2. (2)曼哈顿距离:p=1. (3)各坐标的最大值:p=∞. 2.2 K值的选择 通常使用交叉验证法来选取最优的k值. k值大小的影响: k越小,只有距该点较近的实例才会起作用,学习的近似误差会较小.但此时又会对这些近邻的实例很敏感,如果紧邻点存在噪声,预测就会出错…
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. KNN算法步骤:需对所有样本点(已知分类+未知分类)进行归一化处理.然后,对未知分类的数据集中的每个样本点依次执行以下操作:1.计算已知类别数据集中的点与当前点(未知分类)的距离.2.按照距离递增排序3.选取与当前距离最小的k个点4.确定前k个点所在类别的出现频率5.返回前k个点出现频率最高的类别作为当前点的预测类别 编写R脚本: #!/usr/bin/Rscript #1.对i…
1. kd树简介 构造kd树的方法如下:构造根结点,使根结点对应于k维空间中包含所有实例点的超矩形区域;通过下面的递归方法,不断地对k维空间进行切分,生成子结点.在超矩形区域(结点)上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的坐标轴,将当前超矩形区域切分为左右两个子区域(子结点);这时,实例被分到两个子区域.这个过程直到子区域内没有实例时终止(终止时的结点为叶结点).在此过程中,将实例保存在相应的结点上. 2. kd树建立 3. kd树搜索…
School of Computer Science The University of Adelaide   Artificial Intelligence Assignment 2   Semester 1, 2018 due 11:55pm, Thursday 14th May 2018     Introduction 介绍   In this assignment, you will develop several classification models to classify n…
(2017-04-10 银河统计) KNN算法即K Nearest Neighbor算法.这个算法是机器学习里面一个比较经典的.相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法是用来做归类的,也就是说,一个样本空间里的样本已经分成很几个类型,然后,给定一个待分类的数据,通过计算接近自己最近的K个样本来判断这个待分类数据属于哪个分类.你可以简单的理解为由那离自己最近的K个点来投票决定待分类数据归为哪一类. 一个比较经典的KNN图如下: 从上图中我们可以看到,图中的有两个类型…
软件安全课程的一次实验,整理之后发出来共享. 什么是KD树 要说KD树,我们得先说一下什么是KNN算法. KNN是k-NearestNeighbor的简称,原理很简单:当你有一堆已经标注好的数据时,你知道哪些是正类,哪些是负类.当新拿到一个没有标注的数据时,你想知道它是哪一类的.只要找到它的邻居(离它距离短)的点是什么类别的,所谓近朱者赤近墨者黑,KNN就是采用了类似的方法. 如上图,当有新的点不知道是哪一类时,只要看看离它最近的几个点是什么类别,我们就判断它是什么类别. 举个例子:我们将k取3…
# coding:utf-8 import numpy as np import matplotlib.pyplot as plt T = [[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]] S=[7, 3] class node: def __init__(self, point): self.left = None self.right = None self.point = point self.parent = None pass def s…
最近研究数据挖掘的相关知识,总是搞混一些算法之间的关联,俗话说好记性不如烂笔头,还是记下了以备不时之需. 首先明确一点KNN与Kmeans的算法的区别: 1.KNN算法是分类算法,分类算法肯定是需要有学习语料,然后通过学习语料的学习之后的模板来匹配我们的测试语料集,将测试语料集合进行按照预先学习的语料模板来分类 2Kmeans算法是聚类算法,聚类算法与分类算法最大的区别是聚类算法没有学习语料集合. K-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据他们的属性分为k个聚类以便使得…
一.概述 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关.由于KNN方法主要靠周…
1.1  KNN(K-Nearest Neighbor)工作原理: 存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系.输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较,提取出样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k近邻算法中k的出处,通常k是不大于20的整数.最后选择k个最相似数据中出现次数最多的分类作为新数据的分类. 1.2 算法优缺点…
  之前两篇随笔介绍了kd树的原理,并用python实现了kd树的构建和搜索,具体可以参考 kd树的原理 python kd树 搜索 代码 kd树常与knn算法联系在一起,knn算法通常要搜索k近邻,而不仅仅是最近邻,下面的代码将利用kd树搜索目标点的k个近邻. 首先还是创建一个类,用于保存结点的值,左右子树,以及用于划分左右子树的切分轴 class decisionnode: def __init__(self,value=None,col=None,rb=None,lb=None): sel…
KNN与Kmeans感觉没啥联系,但是名字挺像的,就拿来一起总结一下吧. 初学者的总结. KNN是监督学习,Kmeans是无监督学习. KNN用于分类,Kmeans用于聚类. 先说KNN: 对于KNN,有一批已经标注好label的训练样本,将这批样本的数据转换为向量表示,然后选择度量向量距离的方式.例如 欧式距离,曼哈顿距离,夹脚余弦等.对于这批样本记为W. 然后来一个待分类的样本S,选取W中距离样本S距离最近的K个样本.这K个样本中哪种类别的样本多,则该样本S的分类就是哪种. KNN的优缺点:…
k近邻(k-Nearest Neighbor,简称kNN)学习是一种常用的监督学习方法,其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本.然后基于这k个“邻居”的信息进行预测.通常在分类任务中可使用“投票法”,即选择这k个样本中出现最多的类别标记作为预测结果:在回归任务中可使用“平均法”,即将这k个样本中的实值输出标记的平均值作为预测结果:还可基于距离远近进行加权平均或加权投票,距离越近的样本权重越大.kNN没有一个显示的训练过程. 如下图所示,判断测试样本…