五.反馈(Hopfield)神经网络】的更多相关文章

前馈网络一般指前馈神经网络或前馈型神经网络.它是一种最简单的神经网络,各神经元分层排列.每个神经元只与前一层的神经元相连.接收前一层的输出,并输出给下一层,数据正想流动,输出仅由当前的输入和网络权值决定,各层间没有反馈.包括:单层感知器,线性神经网络,BP神经网络.RBF神经网络等. 递归神经网络(RNN)是两种人工神经网络的总称.一种是时间递归神经网络(recurrent neural network),又名循环神经网络,包括RNN.LSTM.GRU等:另一种是结构递归神经网络(recursi…
神经网络分类 多层神经网络:模式识别 相互连接型网络:通过联想记忆去除数据中的噪声 1982年提出的Hopfield神经网络是最典型的相互连结型网络. 联想记忆 当输入模式为某种状态时,输出端要给出与之相应的输出模式. 如果输入模式与输出模式一致,成为自联想记忆,否则,成为异联想记忆. Hopfield 网络结构上,Hopfield神经网络是一种单层互相全连接的反馈型神经网络.每个神经元既是输入也是输出,网络中的每一个神经元都将自己的输出通过连接权传送给所有其它神经元,同时又都接收所有其它神经元…
一.TSP问题 旅行商问题,又叫货郎担问题.它是指如下问题:在完全图中寻找一条最短的哈密尔顿回路. 哈密尔顿回路问题:给定一个图,判断图中是否存在哈密尔顿回路. 哈密尔顿回路:寻找一条回路,经过图中所有点且每个点只经过一次. 欧拉回路:寻找一条回路,经过图中所有的边且每条边只经过一次. 判断一个图是否存在欧拉回路只需要判断每个顶点的出度和入度是否相同. 判断一个图是否存在一条哈密尔顿回路是一个NP问题. 旅行商问题和哈密尔顿回路问题最大的区别在于:旅行商研究的图是完全图,必然存在一条哈密尔顿回路…
根据其提出者,John Joseph Hopfield 命名.Hopfield 在 1982 年提出的划时代的:Neural networks and physical systems with emergent collective computational abilities 一文.顾名思义,从论文的名字中我们就可看出,Hopfield 神经网络是将物理学的相关思想(动力学)引入到神经网络的构造当中,事实上,Hopfield 本人正是一位物理学家. 这里所谓动力学的方式,不像 BP 神经网…
1.BP神经网络是一种前馈型网络(各神经元接受前一层的输入,并输出给下一层,没有反馈),分为input层,hide层,output层 2.BP神经网络的步骤: 1)创建一个神经网络:newff a.训练样本:归一化(premnmx ,postmnmx ,tramnmx) b.确定节点数:输出层的节点数可直接获得 c.确定各层神经元的激活函数 常见的激活函数:purelin:线性/logsig:对数S型/tansig:正切S型 d.确定训练函数 traingd :梯度下降BP训练函数/traing…
这个网络的内部使用的是hebb学习规则 贴上两段代码: package geym.nn.hopfiled; import java.util.Arrays; import org.neuroph.core.data.DataSet; import org.neuroph.core.data.DataSetRow; import org.neuroph.nnet.Hopfield; import org.neuroph.nnet.comp.neuron.InputOutputNeuron; imp…
TensorFlow基础见前博客 上实例: MNIST 数据集介绍 MNIST 是一个手写阿拉伯数字的数据集. 其中包含有 60000 个已经标注了的训练集,还有 10000 个用于测试的测试集. 本次实验的任务就是通过手写数字的图片,识别出具体写的是 0-9 之中的哪个数字.   理论知识回顾 一个两层的深层神经网络结构如下: 上图所示的是一个具有两层隐藏层的深层神经网络 第一个隐藏层有 4 个节点,对应的激活函数为 ReLu 函数 第一个隐藏层有 2 个节点,对应的激活函数也是 Relu 函…
一.前言 经过一段时间的积累,对于神经网络,已经基本掌握了感知器.BP算法及其改进.AdaLine等最为简单和基础的前馈型神经网络知识,下面开启的是基于反馈型的神经网络Hopfiled神经网络.前馈型神经网络通过引入隐层及非线性转移函数(激活函数)使得网络具有复杂的非线性映射能力.前馈网络的输出仅由当前输入和权矩阵决定,而与网络先前的输出状态无关.J.J. Hopfield教授在反馈神经网络中引入了能量函数的概念,使得反馈型神经网络运行稳定性的判断有了可靠依据,1985年Hopfield和Tan…
Hopfield神经网络使用说明. 该神经网络有两个特点: 1,输出值只有0,1 2,Hopfield没有输入(input) 这里解释一下第二个特点,什么叫没有输入?因为在使用Hopfield网络的时候,多用于图像仿真,图像仿真意思就是先给你一些标准的图像, 比如1~9的数字,然后用一些别的测试图像(模糊不清,让人识别基本靠半猜半看)去逼近标准图像.而所谓的没有输入,意思就是指,你输入的图像就是 输出结果,那么Hopfield就认为没有输入.MATLAB官方说明:Since Hopfield n…
讲的什么 这部分主要对 Hopfield 网络作一大概的介绍.写了其模型结构.能量函数和网络的动作方式.主要参考了网上搜到的一些相关 PPT.   概述 早在 1982 年,Hopfield 发表的文章:[Neural networks and physical systems with emergent collective computational abilities] 中就提出了一种基于能量的模型(Energy Based Model,EBM)--可用作联想存储的互连网络,这算是现在人工…