首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
3、MapReduce
】的更多相关文章
3、MapReduce
MapReduce是一种处理海量数据的并行编程模型和计算框架,用于对大数据及的并行计算. 1.MapReduce基础 1)MapReduce处理数据集过程,如下图: a)Map阶段: MapReduce 框架将任务的输入分割成固定大小的片段(splits),随后将每个split进一步分解成一批键值对<K1,V1>.Hadoop为每个split创建一个Map任务用于执行用户自定义的map函数,并将对应split中的<K1,V1>对作为输入,得到计算的中间结果<K2,V2>…
三、MapReduce学习
MapReducer是一种编程模型,用于大规模数据集(大于1TB)的并行运算.概念"Map(映射)"和"Reduce(化简)" 一.Mapper 1.Mapper负责"分",把复杂的任务分解为若干个简单的任务执行 2.简单的任务分成:a,数据或计算规模对于原任务要大大缩小.b,就近计算,即分配到所需数据节点进行计算.c,这些已分配好的任务彼此间没有依赖关系. 二.Reduc…
大数据核心知识点:Hbase、Spark、Hive、MapReduce概念理解,特点及机制
今天,上海尚学堂大数据培训班毕业的一位学生去参加易普软件公司面试,应聘的职位是大数据开发.面试官问了他10个问题,主要集中在Hbase.Spark.Hive和MapReduce上,基础概念.特点.应用场景等问得多.看来,还是非常注重基础的牢固.整个大数据开发技术,这几个技术知识点占了很大一部分.那本篇文章就着重介绍一下这几个技术知识点. 一.Hbase 1.1.Hbase是什么? HBase是一种构建在HDFS之上的分布式.面向列的存储系统.在需要实时读写.随机访问超大规模数据集时,可以使用HB…
第2节 mapreduce深入学习:14、mapreduce数据压缩-使用snappy进行压缩
第2节 mapreduce深入学习:14.mapreduce数据压缩-使用snappy进行压缩 文件压缩有两大好处,节约磁盘空间,加速数据在网络和磁盘上的传输. 方式一:在代码中进行设置压缩 代码: FlowMain: public static void main(String[] args) throws Exception {// 设置我们的map阶段的压缩Configuration configuration = new Configuration(); configuration.se…
第2节 mapreduce深入学习:7、MapReduce的规约过程combiner
第2节 mapreduce深入学习:7.MapReduce的规约过程combiner 每一个 map 都可能会产生大量的本地输出,Combiner 的作用就是对 map 端的输出先做一次合并,以减少在 map 和 reduce 节点之间的数据传输量,以提高网络IO 性能,是 MapReduce 的一种优化手段之一. combiner 是 MR 程序中 Mapper 和 Reducer 之外的一种组件 combiner 组件的父类就是 Reducer combiner 和…
第2节 mapreduce深入学习:6、MapReduce当中的计数器
第2节 mapreduce深入学习:6. MapReduce当中的计数器 计数器是收集作业统计信息的有效手段之一,用于质量控制或应用级统计.计数器还可辅助诊断系统故障.如果需要将日志信息传输到map 或reduce 任务, 更好的方法通常是看能否用一个计数器值来记录某一特定事件的发生.对于大型分布式作业而言,使用计数器更为方便.除了因为获取计数器值比输出日志更方便,还有根据计数器值统计特定事件的发生次数要比分析一堆日志文件容易得多. hadoop内置计数器列表 MapReduce任务计数器 or…
第1节 MapReduce入门:11、mapreduce程序的入门
1.1.理解MapReduce思想 MapReduce思想在生活中处处可见.或多或少都曾接触过这种思想.MapReduce的思想核心是“分而治之”,适用于大量复杂的任务处理场景(大规模数据处理场景).即使是发布过论文实现分布式计算的谷歌也只是实现了这种思想,而不是自己原创. Map负责“分”,即把复杂的任务分解为若干个“简单的任务”来并行处理.可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系. Reduce负责“合”,即对map阶段的结果进行全局汇总. 这两个阶段合起来正是Ma…
【MapReduce】一、MapReduce简介与实例
(一)MapReduce介绍 1.MapReduce简介 MapReduce是Hadoop生态系统的一个重要组成部分,与分布式文件系统HDFS.分布式数据库HBase一起合称为传统Hadoop的三驾马车,一起构成了一个面向海量数据的分布式系统的基础架构. MapReduce是一个用于大规模数据(大于1TB)处理的分布式计算模型.编程模型,它最初是由Google设计并实现的,在Google提出时,给它的定义是:Map/Reduce是一个编程模型(programming model),是一个…
Hadoop 中HDFS、MapReduce体系结构
在网络环境方面,作为分布式系统,Hadoop基于TCP/IP进行节点间的通信和传输. 在数据传输方面,广泛应用HTTP实现. 在监控.通知方面,Hadoop等分布式大数据软件则广泛使用异步消息队列等机制. 1. hadoop的概念及其发展历程 Hadoop是Apache开源组织的一个分布式计算开源框架,用java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算. Hadoop框架中最核心设计:HDFS和MapReduce,HDFS实现存储,MapReduce实现原理分析…
[MapReduce] Google三驾马车:GFS、MapReduce和Bigtable
声明:此文转载自博客开发团队的博客,尊重原创工作.该文适合学分布式系统之前,作为背景介绍来读. 谈到分布式系统,就不得不提Google的三驾马车:Google FS[1],MapReduce[2],Bigtable[3]. 虽然Google没有公布这三个产品的源码,但是他发布了这三个产品的详细设计论文.而且,Yahoo资助的Hadoop也有按照这三篇论文的开源Java实现:Hadoop对应MapReduce, Hadoop Distributed File System (HDFS)对应Goog…