上篇记录了一些决策树算法,这篇是借OC-SVM填回SMO在SVM中的数学推导这个坑. 参考文献: http://research.microsoft.com/pubs/69644/tr-98-14.pdf https://inst.eecs.berkeley.edu/~ee227a/fa10/login/l_dual_strong.html https://inst.eecs.berkeley.edu/~ee127a/book/login/l_sdual_slater.html http://w…
SupportVector Machines are learning models used forclassification: which individuals in a population belong where? 支持向量机(SVM)定义:支持向量机是主要用于解决分类问题的学习模型. 感知机 在讲解SVM之前我们先回到1956年达特矛斯会议之后,在会议中确定了我们学科的名字AI的同时,也激起了一片人工智能热,正是在这次浪潮中出现了一个人-罗森布拉特. 他是一位心理医生,在神经感知…
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector machine,简称SVM.通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. (一)理解SVM基本原理 1,SVM的本质--分类 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些…
支持向量机(Support Vector Machine)-----SVM之SMO算法(转) 此文转自两篇博文 有修改 序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法.SMO由微软研究院的约翰·普莱特(John Platt)发明于1998年,目前被广泛使用于SVM的训练过程中,并在通行的SVM库libsvm中得到实现. 1998年,SMO算法发表在SVM研究领域内引起了轰动,因为先前可用的S…
SMO算法--SVM(3) 利用SMO算法解决这个问题: SMO算法的基本思路: SMO算法是一种启发式的算法(别管启发式这个术语, 感兴趣可了解), 如果所有变量的解都满足最优化的KKT条件, 那么最优化问题就得到了. 每次只优化两个, 将问题转化成很多个二次规划的子问题, 直到所有的解都满足KKT条件为止. 整个SMO算法包括两个部分: 1, 求解两个变量的解析方法 2, 选择变量的启发式方法 求解两个变量的解析方法 先选择两个变量,其余的固定, 得到子问题: 更新 先不考虑约束条件, 代入…
快毕业啦~~记得上一篇论文利用JointBoost+CRF做手绘草图的分割项目在3月份完结后,6月份去实习,9月份也没怎么认真找工作就立刻回来赶论文(由于分割项目与人合作难以写入毕业论文),从9月到1月一直狂写程序,其中过程就如去年10月开始做分割项目一样艰辛,不过现在工作也定了,论文也差不多了,可喜可贺~.这次的论文主要以手绘草图的分类为主,而分类方法我还是用的SVM支持向量机,用SVM做多分类,现在程序也基本完成了,所以想记录一下毕业论文中遇到个各种难题,我看了一些SVM,由于自己数学功底有…
转自:http://www.blogjava.net/zhenandaci/archive/2009/02/13/254519.html 作者:Jasper 出自:http://www.blogjava.net/zhenandaci/ (一)SVM的八股简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10].支持向量机方法是…
前言 整理SVM(support vector machine)的笔记是一个非常麻烦的事情,一方面这个东西本来就不好理解,要深入学习需要花费大量的时间和精力,另一方面我本身也是个初学者,整理起来难免思路混乱.所以我对SVM的整理会分为四篇(暂定为四篇)学习,不足之处,请多多指导. 四篇分别为: Python机器学习笔记:SVM(1)——SVM概述 Python机器学习笔记:SVM(2)——SVM核函数 Python机器学习笔记:SVM(3)——证明SVM Python机器学习笔记:SVM(4)—…
一.Hard Margin SVM SVM 的思想,最终用数学表达出来,就是在优化一个有条件的目标函数: 此为 Hard Margin SVM,一切的前提都是样本类型线性可分: 1)思想 SVM 算法的本质就是最大化 margin: margin = 2d,SVM 要最大化 margin,也就是要最大化 d,所以只要找到 d 的表达式,也能解决相应的问题: 2)特征空间中样本点到决策边界的距离 二维平面中: n 维空间中: 此处 n 维空间并不是 3 维的立体空间,而是指 n 个方面,或 n 个…
支持向量机是一个相对较新和较先进的机器学习技术,最初提出是为了解决二类分类问题,现在被广泛用于解决多类非线性分类问题和回归问题.继续阅读本文,你将学习到支持向量机如何工作,以及如何利用R语言实现支持向量机. 支持向量机如何工作? 简单介绍下支持向量机是做什么的: 假设你的数据点分为两类,支持向量机试图寻找最优的一条线(超平面),使得离这条线最近的点与其他类中的点的距离最大.有些时候,一个类的边界上的点可能越过超平面落在了错误的一边,或者和超平面重合,这种情况下,需要将这些点的权重降低,以减小它们…