在机器学习中,性能指标(Metrics)是衡量一个模型好坏的关键,通过衡量模型输出y_predict和y_true之间的某种“距离”得出的. 对学习器的泛化性能进行评估,不仅需要有效可行的试验估计方法,还需要有衡量模型泛化能力的评估价标准,这就是性能度量(performance measure).性能度量反映了任务需求,在对比不同模型的能力时,使用不同的性能度量往往会导致不的评判结果:这意味着模型的“好坏”是相对的,什么样的模型是好的,不仅取决于算法和数据,还决定于任务需求. 性能指标往往使我们…
1 贝叶斯网络在地学中的应用 1 1.1基本原理及发展过程 1 1.2 具体的研究与应用 4 2 BP神经网络在地学中的应用 6 2.1BP神经网络简介 6 2.2基本原理 7 2.3 在地学中的具体应用与研究 9 结论 11 参考文献 12 1 贝叶斯网络在地学中的应用 贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础.贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayes…
作者:scott young 一.整体性学习策略 整体性学习是一种学习理论.它更精确.全面地描述了我们大脑是如何工作的.各位, 你的大脑并非简单如计算机的文档储存,计算机文档的本质是一系列 0 和 1 的组合记录在硬 盘上,而人的大脑是通过数亿个神经元相互联系储存信息的. 整体性学习需要采取多种途径综合学习,而不是试图在大脑中复制一个完美的拷贝, 整体性学习是运用你大脑里已有的丰富的神经元网络吸收.整合信息.整体性学习在于创造 信息的网络,一个知识与另一个知识相互关联,那些相互关联的知识网络使你…
Pytorch实现波阻抗反演 1 引言 地震波阻抗反演是在勘探与开发期间进行储层预测的一项关键技术.地震波阻抗反演可消除子波影响,仅留下反射系数,再通过反射系数计算出能表征地层物性变化的物理参数.常用的有道积分.广义线性反演.稀疏脉冲反演.模拟退火反演等技术. 随着勘探与开发的深入,研究的地质目标已经从大套厚层砂体转向薄层砂体,而利用常规波阻抗反演方法刻画薄层砂体不仅要消耗大量人力.物力,且反演得到的波阻抗精度也难以满足实际需求.近年来,深度学习在地震反演和解释等地震领域显现出了巨大的潜力,其中…
摘要:近日,Robert Seaton整理了100多个最有趣的数据集,其中包括Jeopardy真题,死囚的最后一句话,20万个Eclipse Bug,足球比赛相关,柏拉图式的爱情,太阳系以外的行星,11.3万个恐怖事件等. [编者按]在数据爆发式增长的逼迫下,当下数据分析能力已得到长足的发展,机器学习更成为数据处理中必不可缺少的一环.这里,为大家分享Robert Seaton在其个人博客上整理的100+最有趣的数据集,从柏拉图式的爱情到政治竞选再到死刑囚犯,可谓是应有尽有,旨在给大家的模型训练的…
人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载 ImageNet挑战赛中超越人类的计算机视觉系统微软亚洲研究院视觉计算组基于深度卷积神经网络(CNN)的计算机视觉系统,在ImageNet 1000挑战中首次超越了人类进行对象识别分类的能力.他们的系统在ImageNet 2012分类数据集中的错误率已降低至4.94%.这个数据集包含约120万张训练图像.5万张验证图像和10万张测试图像,分为1000个不同的类别.该研究团队由微软亚洲研究院研究员孙剑.何…
一,scikit-learn中常用的评估模型 1.评估分类模型: ​ 2.评估回归模型: ​ 二.常见模型评估解析: •对于二分类问题,可将样例根据其真实类别和分类器预测类别划分为:(T,F表示预测的正确与错误性,P,N表示预测的正类和负类) •真正例(TruePositive,TP):真实类别为正例,预测类别为正例. •假正例(FalsePositive,FP):真实类别为负例,预测类别为正例. •假负例(FalseNegative,FN):真实类别为正例,预测类别为负例. •真负例(True…
  欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 统计项目联系QQ:231469242 用条件概率理解混合矩阵容易得多 sensitivity:真阳性…
之前介绍了这么多分类模型的性能评价指标(<分类模型的性能评价指标(Classification Model Performance Evaluation Metric)>),那么到底应该选择哪些指标来评估自己的模型呢?答案是应根据应用场景进行选择. 查全率(Recall):recall是相对真实的情况而言的:假设测试集里面有100个正类,如果模型预测出其中40个是正类,那模型的recall就是40%.查全率也称为召回率,等价于灵敏性(Sensitivity)和真正率(True Positive…
高性能计算(HPC)和云计算曾是两个"平行世界",各自演绎着精彩,却鲜有交集. 传统上,HPC主要应用于大规模计算,如天气预报.石油勘探.药物研发等.这些任务通常借助超级计算机或计算集群运行,需要很多特殊的软硬件来加速节点间通讯并提升性能和可靠性,自成一统的同时也阻碍了拥抱新技术.新平台的步伐. 云计算在诞生初期掀起了虚拟化的浪潮,甚至尝试过与HPC亲密接触,但终因性能损耗和网络延时而失之交臂.伴随亚马逊等云平台的迅猛发展,通用计算领域几乎已变成云的天下,千行百业都在基于云底座进行数字…