相关query挖掘】的更多相关文章

1.何为相关query 我通常也把相关query称为相似query,搜索日志中一个用户在短时间内的一系列搜索词被称为相关query.相关就是两个query间有一定的关系,反映了用户在当时的需求.本文就以应用搜索为背景来介绍相关query. 2.有什么作用 相关query的作用就很多了: 错词纠正:输入一个错误的词找不到应用,然后输入一个正确的词 同名互换:和错词纠正是一个场景,如中英文名称(cytus和音乐世界),别名(艾达的梦和纪念碑谷)等 同义词:对战和对打:台球和桌球等 同类型应用:如微信…
为何需要Query改写 Query分析是搜索引擎的一个重要模块,对搜索结果的覆盖率和相关性至关重要.搜索引擎的检索过程包含了两个重要的阶段:匹配和排序.匹配也叫召回,表示根据用户的查询条件,尽可能多地匹配出主题相关的文档,尽可能少地匹配出主题不相关的文档.排序是指对召回阶段返回的文档集合进行合理的排序,把最满足用户意图的结果尽可能排到前面.Query分析的主要目标是为匹配过程提供必要的知识和信息,同时兼顾后面的排序过程,为排序模型提供原始特征. Query改写是Query分析的一个重要组成部分.…
/* 版权声明:可以任意转载,转载时请务必标明文章原始出处和作者信息 .*/                  CopyMiddle: 张俊林 TimeStamp:2012年3 月 在微博环境下,如何自动挖掘某个微博用户的社交圈子或者兴趣圈子是个很基础且重要的问题.如果能够对于某个用户在微博上体现的社交关系进行准确的挖掘,对于很多具体应用来说都有很好的作用,比如可以更好的对用户的兴趣进行挖掘或者能够推荐用户还未关注的社交圈子成员等,或者根据其社交圈子更准确的对用户进行个性化建模,为其它基于用户个…
搜索广告 搜索广告就是一个典型的Ad Network,但是搜索广告非常重要,它的收入非常高,所以它有其独特之处,复杂度也比展示广告要高.它与展示广告在点击率预测,检索部分差不多,它的特点:1. 用户定向标签f(u):远远弱于上下文影响,一般可以忽略,但是因为搜索广告中query的信息已经很强了,用query已经足够了.2. Sesion内的短时用户搜索行为作用很重要,3. 上下文定向标签f(c):关键词. 搜索广告是一种很典型的位置竞价模式,而展示广告一般只有一个位置,但偶尔也有多位置拍卖的时候…
CIKM Competition数据挖掘竞赛夺冠算法陈运文 背景 CIKM Cup(或者称为CIKM Competition)是ACM CIKM举办的国际数据挖掘竞赛的名称.CIKM全称是International Conference on Information and Knowledge Management,属于信息检索和数据挖掘领域的国际著名学术会议,由ACM SIGIR分会(ACM Special Interest Group on Information Retrieval)主办.…
导读 POI是“Point of interest”的缩写,中文可以翻译为“兴趣点”.在地图上,一个POI可以是一栋房子.一个商铺.一个公交站.一个湖泊.一条道路等.在地图搜索场景,POI是检索对象,等同于网页搜索中的网页.在地图客户端上,用户选中一个POI,会有一个悬浮的气球指向这个POI. 如上图左边,这家商场内的屈臣氏是一个POI:而所谓类别标签,就是在类别维度对POI属性的一种概括,比如,屈臣氏的类别标签化妆品,而屈臣氏所坐落的凯德mall,类别标签是商场:右侧则是商场query搜索召回…
logstash是一个数据分析软件,主要目的是分析log日志.整一套软件可以当作一个MVC模型,logstash是controller层,Elasticsearch是一个model层,kibana是view层. 首先将数据传给logstash,它将数据进行过滤和格式化(转成JSON格式),然后传给Elasticsearch进行存储.建搜索的索引,kibana提供前端的页面再进行搜索和图表可视化,它是调用Elasticsearch的接口返回的数据进行可视化.logstash和Elasticsear…
Atitti 知识图谱构建方法attilax 总结   1.1. 知识图谱schema构建(体系化)1 1.2. 纵向垂直拓展(向上抽象,向下属性拓展)2 1.3. 横向拓展2 1.4. 网拓展2 1.5. a) 推理2 1.6. c) 相关实体挖掘 2 2. other3 2.1. 面向站点的包装器(Site-specificWrapper)3 2.2. 5. 知识图谱的更新和维护3   a) 实体对齐  实体对齐(Object Alignment 各大搜索引擎公司普遍采用的方法是聚类.聚类的…
Apriori: 其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集.经典的关联规则数据挖掘算法Apriori 算法广泛应用于各种领域,通过对数据的关联性进行了分析和挖掘,挖掘出的这些信息在决策制定过程中具有重要的参考价值. Apriori算法广泛应用于商业中,应用于消费市场价格分析中,它能够很快的求出各种产品之间的价格关系和它们之间的影响.通过数据挖掘,市场商人可以瞄准目标客户,采用个人股票行市.最新信息.特殊的市场推广活动或其他一些特殊的信息手段,从而极大地减少广告预算和增…
APRIORI Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集.而且算法已经被广泛的应用到商业.网络安全等各个领域. Apriori算法   是一种最有影响的挖掘布尔关联规则频繁项集的算法.其核心是基于两阶段频集思想的递推算法.该关联规则在分类上属于单维.单层.布尔关联规则.在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集. 算法思想 该算法的基本思想[2]  是:首先找出所有的频集,这些项集出现的频繁性至少和…