概率(Probability):事件发生的可能性的数值度量. 组合(Combination):从n项中选取r项的组合数,不考虑排列顺序.组合计数法则:. 排列(Permutation):从n项中选取r项的组合数,考虑排列顺序.排列计数法则:. 贝叶斯定理(Bayes's Theorem):获取新信息后对概率进行修正的一种方法.先验概率--->新信息--->应用贝叶斯定理--->后验概率.具体请见:贝叶斯定理推导(Bayes's Theorem). 离散型概率分布(Discrete Pro…
2.1概率密度函数 2.1.1定义 设p(x)为随机变量x在区间[a,b]的概率密度函数,p(x)是一个非负函数,且满足 注意概率与概率密度函数的区别. 概率是在概率密度函数下对应区域的面积,如上图右所示,其公式如下 我们用概率密度函数来表示在区间[a,b]中所有可能的状态x的可能性. 条件概率密度函数,设p(x|y)是在条件y属于[r,s]下x(x属于[a,b])的概率密度函数,有 N维连续随机变量的联合概率密度函数记为p(X),其中X=(x1,...,xn),xi属于[ai,bi],有时我们…
一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in the field of pattern recognition is that of uncertainty. 可以看出概率论在模式识别显然是非常重要的一大块. 读其他书的时候在概率这方面就也很纠结过. 我们也还是通过一个例子来理解一下Probability Theory里面一些重要的概念. Ima…
http://blog.csdn.net/pipisorry/article/details/52459847 概率图模型PGM:概率论基础知识 独立性与条件独立性 独立性 条件独立性 也就是表示给定 c 的条件下 a 与 b 条件独立,等价于公式p(a | b, c) = p(a | c) 随机变量的独立性 等价于 条件独立性的性质 这里是前面的独立性可以导出后面的独立性,而不是等价于后面的独立性. 条件独立的证明 如分解性质可以通过积分w证明:其实画个概率图来更容易分析了. 独立性性质的利用…
A. Ivan the Fool and the Probability Theory Recently Ivan the Fool decided to become smarter and study the probability theory. He thinks that he understands the subject fairly well, and so he began to behave like he already got PhD in that area. To p…
一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉.重复多次. 假设我们40%的概率选到红盒子,60%的概率选到蓝盒子.并且当我们把取出的水果拿掉时,选择盒子中任何一个水果还是等可能的. 问题: 1.整个过程中,取得苹果的概率有多大? 2.假设已经去的了一个橘子的情况下,这个橘子来自蓝盒子的可能性有多大? (这里,推荐一篇好文:数学之美番外篇:平凡而…
一.概论 基础引入: 原理一:[两边夹定理] 原理二:[极限] X为角度x对应的圆弧的点长: 原理三[单调性]: 引入: 二.导数 常见函数的导数: 四.应用: 求解: 泰勒展式和麦克劳林展式: 泰勒展式在x0 = 0处展开得到麦克劳林展式 Taylor公式的应用1: 变种: Taylor公式应用2: 方向导数: 梯度: 函数的凸凹性: 函数凸凹性判定: 凸函数性质的应用: . 五.概率论 概率为0例子: 把一枚针投在一个平面上,则概率为0(一个点 之于 一个面) 古典概型: 思路: 古典概型变…
虽然学过Machine Learning和Probability今天看着一part的时候还是感觉挺有趣,听惊呆的,尤其是Bayesian Approach.奇怪发中文的笔记就很多人看,英文就没有了,其实我觉得英文的写得更好呀...囧...一边看一边写一边实现,好慢,求同道中人啊...…
1.Probability mass functions (pmf) and Probability density functions (pdf) pmf 和 pdf 类似,但不同之处在于所适用的分布类型 PMF -> <font color='green'>discrete distributions</font>, while pdf -> <font color='green'>continuous distributions</font>…
第1章 组合分析 1.1 引言 1.2 计数基本法则 1.3 排列 1.4 组合 1.5 多项式系数 *1.6 方程的整数解个数 第2章 概率论公里 2.1 引言 2.2 样本空间和事件 2.3 概率论公里 2.4 几个简单命题 2.5 等可能结果的样本空间 *2.6 概率:连续集函数 2.7 概率:确信程度的度量 第3章 条件概率和独立性 3.1 引言 3.2 条件概率 3.3 贝叶斯公式 3.4 独立事件 3.5 P(●|F)是概率 第4章 随机变量 4.1 随机变量 4.2 离散型随机变量…