Weilin Huang——[ECCV2016]Detecting Text in Natural Image with Connectionist Text Proposal Network 目录 作者和相关链接 几个关键的Idea出发点 方法概括 方法细节 实验结果 总结与收获点 作者和相关链接 个人主页:Zhi Tian,黄伟林,Tong He,Pan He,乔宇 作者简单信息: 论文下载:论文传送门 代码下载:代码传送门 几个关键的Idea出发点 文本检测和一般目标检测的不同——文本线是…
前面曾提到过CTPN,这里就学习一下,首先还是老套路,从论文学起吧.这里给出英文原文论文网址供大家阅读:https://arxiv.org/abs/1609.03605. CTPN,以前一直认为缩写一般是从题目的开始依次排序选取首字母的,怕是孤陋寡闻了,全称是“ Detecting Text in Natural Image with Connectionist Text Proposal Network”,翻译过来是基于连接Proposal(直译太难受!!)网络的文本检测. 作者在论文中描述了…
论文标题:Detecting Text in Natural Image with Connectionist Text Proposal Network 论文作者:Zhi Tian , Weilin Huang, Tong He , Pan He , and Yu Qiao 论文源代码的下载地址:https://github.com/tianzhi0549/CTPN 论文代码的下载地址:https://github.com/eragonruan/text-detection-ctpn 论文地址…
Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失缺乏对label信息的考虑(???). (2)Contribution: 提出一个新的端到端网络框架,称为 CNN and RNN Fusion(CRF),结合了Siamese.Softmax 联合损失函数.分别对全身和身体局部进行模型训练,获得更有区分度的特征表示. Method (1)框架: (…
Introduction (1)Motivation: 当前的行人重识别方法都只能在标准的数据集上取得好的效果,但当行人被遮挡或者肢体移动时,往往效果不佳. (2)Contribution: ① 提出了一个基于区域的适应性质量估计网络(adaptive region-based quality estimation network,RQEN),包含了区域性特征提取模块和基于区域的质量预测模块.其旨在减小低质量图像区域的影响,利用序列中的区域互补. ② 提供了一个大规模的较整洁的数据集:Label…
论文全名:Detecting Text in Natural Image with Connectionist Text Proposal Network 1.摘要 (1)本文提出新型网络CTPN,用于自然图像中的文本行定位.CTPN直接在卷积特征映射中的一系列细粒度文本提议中检测文本行.(创新一)开发了一个垂直锚点机制,联合预测每个固定宽度提议的位置和文本.非文本的分数.(创新二)序列提议通过循环神经网络自然连接起来,该网络无缝的结合到卷积网络中,从而形成可训练的端到端模型. 2.引言 (1)…
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 作者补充信息 参考文献 作者和相关链接 论文下载 作者: tong he, 黄伟林,乔宇,姚剑 方法概括 使用改进版的MSER(CE-MSERs,contrast-enhancement)提取候选字符区域: 使用新的CN…
Weilin Huang--[AAAI2016]Reading Scene Text in Deep Convolutional Sequences 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 参考文献 作者和相关链接 论文下载 黄伟林主页 , 乔宇,汤晓欧 所有作者 方法概括 解决问题:单词识别 主要流程:maxout版的CNN提取特征,RNN(LSTM)进行分类,CTC对结果进行调整.整个流程端到端训练和测试,和白翔的CRNN(参考文献1)方法几…
Weilin Huang——[arXiv2016]Accurate Text Localization in Natural Image with Cascaded Convolutional Text Network 目录 作者和相关链接 背景介绍 方法概括 方法细节 实验结果 总结与收获点 参考文献 作者和相关链接 个人主页:Tong He,黄伟林,乔宇,姚剑 作者简单信息: 论文下载:论文传送门 背景介绍 自底向上方法(bottom up)的一般流程 Step 1: 用滑动窗口或者MSER…
XiangBai——[CVPR2017]Detecting Oriented Text in Natural Images by link Segments 目录 作者和相关链接 方法概括 方法细节 实验结果 方法的局限性 总结与收获点 作者和相关链接 作者 论文下载 石葆光, 白翔,Serge Belongie 方法概括 文章简述: 方法名字:SegLink 改进版的SSD用来解决多方向的文字检测问题 方法的性能 ICDAR15 Incidental: 0.75(f) MSRATD500: 0…
Zhuoyao Zhong--[aixiv2016]DeepText A Unified Framework for Text Proposal Generation and Text Detection in Natural Images 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 参考文献 作者和相关链接 作者 Zhuoyao Zhong, z.zhuoyao@mail.scut.sdu.cnLianwen Jin, lianwen.jin@gm…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
Jiaming Liu--[2019]Detecting Text in the Wild with Deep Character Embedding Network 论文 Jiaming Liu--[2019]Detecting Text in the Wild with Deep Character Embedding Network 作者 亮点 通过将文字的字符合并问题转成字符embedding问题,利用一个网络来学习字符间的连接关系 方法概述 针对任意文字检测(水平.倾斜.曲文),采用从…
论文阅读:<Bag of Tricks for Efficient Text Classification> 2018-04-25 11:22:29 卓寿杰_SoulJoy 阅读数 954更多 分类专栏: 深度学习 自然语言处理   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u011239443/article/details/80076720 https://blog.csdn.…
Connectionist Text Proposal Network 简介 CTPN是通过VGG16后在特征图上采用3*3窗口进行滑窗,采用与RPN类似的anchor机制,固定width而只预测anchor的y坐标和高度,达到比较精准的text proposal效果.同时,文章的亮点在于引入了RNN,使用BLSTM使得预测更加精准.CTPN在自然场景下文本提取的效果很不错,不同于传统的bottom-up方法,传统方法通过检测单个字符然后再去连接文本线,其准确性主要依赖于单个字符的识别,而且错误…
Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science literature The overwhelming majority of scientific knowledge is published as text, which is difficult to analyse by either traditional statistical anal…
YOLO(You Only Look Once)是一个流行的目标检测方法,和Faster RCNN等state of the art方法比起来,主打检测速度快.截止到目前为止(2017年2月初),YOLO已经发布了两个版本,在下文中分别称为YOLO V1和YOLO V2.YOLO V2的代码目前作为Darknet的一部分开源在GitHub.在这篇博客中,记录了阅读YOLO两个版本论文中的重点内容,并着重总结V2版本的改进. Update@2018/04: YOLO v3已经发布!可以参考我的博客…
想着CSDN还是不适合做论文类的笔记,那里就当做技术/系统笔记区,博客园就专心搞看论文的笔记和一些想法好了,[]以后中框号中间的都算作是自己的内心OS 有时候可能是问题,有时候可能是自问自答,毕竟是笔记嘛 心路历程记录:然后可能有很多时候都是中英文夹杂,是因为我觉得有些方法并没有很好地中文翻译的意思(比如configuration space),再加上英文能更好的搜索.希望大家能接受这种夹杂写法,或者接受不了的话直接关掉这个看原文 前言:这是一篇02年的关于Motion Planning - P…
1.难点-如何实现高效的通信 我们考虑下列的多任务优化问题: \[ \underset{\textbf{W}}{\min} \sum_{t=1}^{T} [\frac{1}{m_t}\sum_{i=1}^{m_t}L(y_{ti}, \langle \bm{w}_t, \bm{x}_{ti} \rangle)]+\lambda \text{pen}(\textbf{W}) \tag{1} \] 这里\(\text{pen}(\mathbf{W})\)是一个用于增强group sparse的正则项…
前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进行过模拟比赛,恐怕还是会捉襟见肘,不能够游刃有余地应对真正比赛中可能会遇到的一些困难.笔者就自己的经验稍稍给大家谈谈,在看了很多数学模型的书籍之后,如何通过论文阅读,将我们的水平上升一个新的台阶,达到一个质的飞跃! 首先,大家要搞清楚教材和论文的区别.教材的主要目的是介绍方法,前人总结出来的最经典的…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 下一代的Hadoop框架,支持10,000+节点规模的Hadoop集群,支持更灵活的编程模型 == 核心思想 == 固定的编程模型,单点的资源调度和任务管理方式,使得Hadoop 1…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 为了提高资源的利用率以及满足不同应用的需求,在同一集群内会部署各种不同的分布式运算框架(cluster computing framework),他们有着各自的调度逻辑. Mesos…
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但传统的seq2seq存在很多问题.本文就提出了两个问题: 1)传统的seq2seq模型倾向于生成安全,普适的回答,例如“I don’t know what you are talking about”.为了解决这个问题,作者在更早的一篇文章中提出了用互信息作为模型的目标函数.具体见A Diversi…
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, built using word co-occurrence statistics as per the distributional hypothesis. 分布式假说(distributional hypothesis) word with similar contexts have the…
论文源址:https://arxiv.org/pdf/1703.06870.pdf 开源代码:https://github.com/matterport/Mask_RCNN 摘要 Mask R-CNN可以在进行检测的同时,进行高质量的分割操作.基于Faster R-CNN并进行扩展,增加了一个分支在进行框识别的同时并行的预测目标的mask.Mask R-CNN易于训练,相比Faster R-CNN增加了一点点花销.此外,Mask R-CNN可以很容易扩展至其他任务中.如关键点检测.本文在COCO…
今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 三位大佬:Jonathan Long Evan Shelhamer Trevor Darrell 这个网址是网上一个大佬记录的FCN的博客,同时深深感受到了自己与大佬的差距,但还是硬着头皮把论文阅读完成,贴出网址,和大家一起学习:https://blog.csdn.net/happyer8…
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于知网资源的词嵌入学习模型,在通用的中文词嵌入评测数据集上进行了评测,取得了较好的结果. 作者简介 该论文选自 ACL 2017,是清华大学孙茂松刘知远老师组的成果.论文的两名共同第一作者分别是牛艺霖和谢若冰. 牛艺霖,清华本科生. 谢若冰,清华研究生(2014-2017),清华本科生(2010-20…
论文阅读:Prominent Object Detection and Recognition: A Saliency-based Pipeline  如上图所示,本文旨在解决一个问题:给定一张图像,我们最应该关注哪些区域?怎么将其分割出来?这是一个什么东东?这三个子问题为一体. Problem formulation: Given an image, determine the most influential item in the scene in terms of region of i…
一.论文所解决的问题 实现长期记忆(大量的记忆),而且实现怎样从长期记忆中读取和写入,此外还增加了推理功能 为什么长期记忆非常重要:由于传统的RNN连复制任务都不行,LSTM预计也够玄乎. 在QA问题中,长期记忆是非常重要的,充当知识库的作用.从当中获取长期记忆来回答问题 上面这个问题就是,当遇到有若干个句子而且句子之间有联系的时候,RNN和LSTM就不能非常好地解决,以为是长期依赖.须要从记忆中提取信息 二.论文的解决方式 (0)总体架构一览 实际上所谓的Memory Network是一个通用…
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于Deep Learning Processors的Slides笔记,主要参考了[1]中的笔记,自己根据paper和slides读一遍,这里记一下笔记,方便以后查阅. 14.1 A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28…