SVM小白教程(2):拉格朗日对偶】的更多相关文章

在上一篇文章中,我们推导出了 SVM 的目标函数: \[ \underset{(\mathbf{w},b)}{\operatorname{min}} ||\mathbf{w}|| \\ \operatorname{s.t.} \ y_i(\mathbf{w}^T\mathbf{x_i}+b) \ge \delta, \ \ i=1,...,m \] 由于求解过程中,限制条件中的 \(\delta\) 对结果不产生影响,所以简单起见我们把 \(\delta\) 替换成 1.另外,为了之后求解的方便…
关于 SVM(支持向量机),网上教程实在太多了,但真正能把内容讲清楚的少之又少.这段时间在网上看到一个老外的 svm 教程,几乎是我看过的所有教程中最好的.这里打算通过几篇文章,把我对教程的理解记录成中文.另外,上面这篇教程的作者提供了一本免费的电子书,内容跟他的博客是一致的,为了方便读者,我把它上传到自己的博客中. 这篇文章主要想讲清楚 SVM 的目标函数,而关于一些数学上的优化问题,则放在之后的文章. 什么是 SVM SVM 的全称是 Support Vector Machine,中文名支持…
拉格朗日对偶(Lagrange duality) 存在等式约束的极值问题求法,比如下面的最优化问题:              目标函数是f(w),下面是等式约束.通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为              L是等式约束的个数. ,然后解出w和.至于为什么引入拉格朗日算子可以求出极值,原因是f(w)的dw变化方向受其他不等式的约束,dw的变化方向与f(w)的梯度垂直时才能获得极值,而且在极值处,f(w)的梯度与其他等式梯度的线性组合平行,因此他们…
链接地址:http://www.cocoachina.com/bbs/read.php?tid=333937 cocos2d-x3.9利用cocos引擎一键打包Android平台APK(C++小白教程)       此教程仅供参考,C++小白系列,从新建工程到打包apk,大神们可在评论多给留言建议,若有不详或错误请予指点.OK,我们直入主题 本教程开发环境详情如下开发系统:win764位开发工具:cocos引擎v2.3.3,VS2013cocos2dx版本:3.9 步骤一:windows下各类工…
制作Windows10政府版的小白教程 https://03k.org/make10entg.html 首先,宿主系统要比操作的系统新,因为低版本dism操作不了: 当然也可以单独下载ADK,提取最新版本的dism工具. ADK官方下载地址:https://developer.microsoft.com/zh-cn/windows/hardware/windows-assessment-deployment-kit#winADK 我提取出来的dism包: 链接: https://pan.baid…
一.先对git 进行用户设置 首先你得在网上下载git软件并且安装,一路默认安装就好了,然后就可以开始本地仓库的建立了.打开你安装好的git, 在开始菜单里面找到git文件夹里面的git bash端   ,我们的一切操作都在这个里面进行. 在git bash里面进行用户名和邮箱设置 git config --global user.name "随便取一个用户名" (回车) git config --global user.email "输入你自己的邮箱" (回车)…
在学习SVM(Support Vector Machine) 支持向量机时,对于线性可分的分类样本求出的分类函数为: 其中,分类超平面可以表示为:…
引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不用多想),考虑约束最优化问题: 称为约束最优化问题的原始问题. 现在如果不考虑约束条件,原始问题就是: 因为假设其连续可微,利用高中的知识,对求导数,然后令导数为0,就可解出最优解,很easy. 那么,问题来了(呵呵...),偏偏有约束条件,好烦啊,要是能想办法把约束条件去掉就好了,bingo! 拉…
引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不用多想),考虑约束最优化问题: 称为约束最优化问题的原始问题. 现在如果不考虑约束条件,原始问题就是: 因为假设其连续可微,利用高中的知识,对求导数,然后令导数为0,就可解出最优解,很easy. 那么,问题来了(呵呵...),偏偏有约束条件,好烦啊,要是能想办法把约束条件去掉就好了,bingo! 拉…
转载自https://www.cnblogs.com/90zeng/p/Lagrange_duality.html,本人觉得讲的非常好! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不用多想),考虑约束最优化问题: 称为约束最优化问题的原始问题. 现在如果不考虑约束条件,原始问题就是: 因为假设其连续可微,利用高中的知识,对求导数,然后令导数为0,就可解出最优解,很easy. 那么,问题来了(呵呵...),偏偏有约束条件,好烦啊,要是能想办法把约束条件去掉就好…