LIS的O(nlogn)算法】的更多相关文章

出自蓝书<算法竞赛入门经典训练指南> 求最长上升子序列是很常见的可以用动态规划解决的问题…… 很容易根据最优子结构之类的东西得出 $\text{dp}[i]$为以第i个数结尾的最长上升子序列长度 定义$\max{\emptyset}=0$,粗略地写出 \[\text{dp}[i] = \max \left\{ \text{dp}[j]|0\leqslant j < i,A[j] < A[i] \right\} + 1\] 状态数$\mathcal{O}({n})$,如果直接枚举转移…
Bridging signals Description 'Oh no, they've done it again', cries the chief designer at the Waferland chip factory. Once more the routing designers have screwed up completely, making the signals on the chip connecting the ports of two functional blo…
最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时.LIS问题可以优化为nlogn的算法.定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素.注意d中元素是单调递增的,下面要用到这个性质.首先len = 1,d[1] = a[1],然后对a[i]:若a[i]>d[len],那么len++,d[len] = a[i];否则,我们要从d[1]到d[len-1]中找到一个j,满足d[j-1]<a[i]<d[j],则根据D的定义,我们需…
转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5. 下面一步一步试着找出它. 我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列. 此外,我们用一个变量Len来记录现在最长算到多少了 首先,把d[1]有序地放到B里,令B[1] = 2,就是说当…
一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i>j.然后在lis[]中找到最大的一个值,时间复杂度是O(n^2). 代码实现: int Longest_Increasing(int num[],int n){ int lis[n],i,j; for(i=0;i<n;i++){ lis[i]=1; for(j=0;j<i;j++) if(nu…
最长上升子序列 时间限制: 10 Sec   内存限制:128 MB 题目描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.我们想知道此时最长上升子序列长度是多少? 输入 第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N) 输出 1行,表示最长上升子序列的长度是多少. 样例输入 3 0 0 2 样例输出 2 提示 100%的数据 n&l…
对于一个数组,例如:int[] a = {4,-3,5,-2,-1,2,6,-2}找出一个连续子序列,对于任意的i和j,使得a[i]+a[i+1]+a[i+2]+.......+a[j]他的和是所有子序列中最大的,这个连续子序列被称为和最大的连续子序列,上面那个例子的连续子序列最大和应该是11,由4 + -3 + 5 + -2 + -1 + 2 + 6 = 11得出,但是如果我们用程序表示应该如何进行又快又好地计算呢?最近正在看<数据结构和问题求解>这本书,书上介绍了一个分治算法(至少含有两个…
浅析拯救小矮人的 nlogn 算法及其证明 题型简介: 有 $ n $ 个人,第 $ i $ 个人身高 $ a_i $ 手长 $ b_i $ ,他们为了从一个高为 $ H $ 的洞中出去,决定搭人梯.如果一个人和他下面的人的身高之和加上他的手长可以达到洞的高度,那么他就可以出去.求最多有多少人能出去. $ n\leq 10^6 $ 算法流程 本题需要贪心,所以我们可以贪心到底.首先我们将所有人,按照他们的最低逃生高度 $ H-a_i-b_i $ 从高到低排序.一个必须要知道的结论:最低逃生高度越…
题目描述 给定一个数列,包含N个整数,求这个序列的最长上升子序列. 例如 2 5 3 4 1 7 6 最长上升子序列为 4. 1.O(n2)算法解析 看到这个题,大家的直觉肯定都是要用动态规划来做,那么我们先设立一个数组. 设d[ i ]为以a[ i ]为结尾的最大子序列的长度 有了这个后,我们可以很容易的写出状态转移方程: d[ i ] = max(d[ i ] , d[ j ] + 1) 若 j < i 且 a[ i ] > a[ j ] #include <stdio.h>…
这个博客说的已经很好了.http://blog.csdn.net/shuangde800/article/details/7474903 简单记录一下自己学的: 问题就是求一个数列最长上升子序列的长度. 如果子序列长度相同,那么末尾小的子序列更有可能成为最长的子序列.所以就用一个l数组存当子序列长度为len时最小的末尾元素.如果序列下一个值比l[len]大,说明上升子序列长度增加,那么l[len++]=a[i];如果是小,就想办法把它插入到了l数组中.... HDU 1950 说白了就是求lis…