spark新能优化之shuffle新能调优】的更多相关文章

shuffle调优参数 new SparkConf().set("spark.shuffle.consolidateFiles", "true") spark.shuffle.consolidateFiles:是否开启shuffle block file的合并,默认为false//设置从maPartitionRDD上面到到下个stage的resultTask时数据的传输快可以聚合(具体原理可以看下shuffle的原理设置和没设置的区别)spark.reducer.m…
文章目录 Java性能优化 尽量在合适的场合使用单例 尽量避免随意使用静态变量 尽量避免过多过常地创建Java对象 尽量使用final修饰符 尽量使用局部变量 尽量处理好包装类型和基本类型两者的使用场所 慎用synchronized,尽量减小synchronize的方法 尽量不要使用finalize方法 尽量使用基本数据类型代替对象 多线程在未发生线程安全前提下应尽量使用HashMap.ArrayList 尽量合理的创建HashMap 尽量减少对变量的重复计算 尽量避免不必要的创建 尽量在fin…
通过上面的架构和源码实现的分析,不难得出Shuffle是Spark Core比较复杂的模块的结论.它也是非常影响性能的操作之一.因此,在这里整理了会影响Shuffle性能的各项配置.尽管大部分的配置项在前文已经解释过它的含义,由于这些参数的确是非常重要,这里算是做一个详细的总结. 1.1.1  spark.shuffle.manager 前文也多次提到过,Spark1.2.0官方支持两种方式的Shuffle,即Hash Based Shuffle和Sort Based Shuffle.其中在Sp…
原文:http://www.cnblogs.com/arachis/p/Spark_Shuffle.html spark.shuffle.file.buffer 默认值:32k 参数说明:该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小.将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘. 调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如64k),从而减少shuffle…
总的来说,需要考虑以下两点: 1. 有效地运用集群资源去减少每个批次处理的时间 2. 正确的设置batch size,以使得处理速度能跟上接收速度 一.  为了减少处理时间,主要有以下几个优化点: 1. 接收数据的并行度. 每个InputDStream只创建一个Receiver用于接收数据,如果接收数据是系统的瓶颈,可以创建多个InputDStream.配置不同的InputDStream读取数据源的不同分区.比如原先用一个InputDStream读取Kafka的两个topic的数据,可以拆分成两…
一. 说到mysql的调优,有许多的点可以让我们去做,因此梳理下,一些调优的策略,今天只是总结下服务器参数的调优  其实说到,参数的调优,我的理解就是无非两点: 如果是Innodb的数据库,innodb_buffer_pool_size就开的尽可能大点,我一般都是开内存的80%左右 如果是MyISAM的数据库,key_buffer_size就尽可能的开的大点.  我觉得这是非常重要的两个参数,下面是重点介绍下,这两个参数的作用:  innodb_buffer_pool_size:  该参数是用来…
本文参考:http://www.trinea.cn/android/android-performance-demo/ 本文主要分享自己在appstore项目中的性能调优点,包括同步改异步.缓存.Layout优化.数据库优化.算法优化.延迟执行等. 一.性能瓶颈点 整个页面主要由6个Page的ViewPager,每个Page为一个GridView,GridView一屏大概显示4*4的item信息(本文最后有附图).由于网络数据获取较多且随时需要保持页面内app下载进度及状态,所以出现以下性能问题…
1.数据倾斜 数据倾斜指的是,并行处理的数据集中,某一部分(如Spark或Kafka的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 数据倾斜俩大直接致命后果. 1.数据倾斜直接会导致一种情况:Out Of Memory. 2.运行速度慢. 主要是发生在Shuffle阶段.同样Key的数据条数太多了.导致了某个key(下图中的80亿条)所在的Task数据量太大了.远远超过其他Task所处理的数据量. 一个经验结论是:一般情况下,OOM的原因都是…
I/O指标已介绍,那么如何查看系统的这些指标呢? 一.根据工具查性能 二.根据性能找工具 三.磁盘I/O观察实例 iostat 是最常用的磁盘 I/O 性能观测工具,它提供了每个磁盘的 使用率 . IOPS . 吞吐量 等各种常见的性能指标.这些指标实际上来自 /proc/diskstats. 1)%util ,就是我们前面提到的磁盘 I/O 使用率: 2)r/s+ w/s ,就是 IOPS: 3)rkB/s+wkB/s ,就是吞吐量: 4)r_await+w_await ,就是响应时间. 5)…