HDU 3117 Fibonacci Numbers 数学】的更多相关文章

http://acm.hdu.edu.cn/showproblem.php?pid=3117 fib是有一个数学公式的. 这里的是标准的fib公式 那么fib = 1 / sqrt(5) * ((1 + sqrt(5) / 2) ^ n - ((1 - sqrt(5)) / 2)^n) = 1 / sqrt(5) * (A^n - B^n) 那么,求后4位可以直接矩阵快速幂. 不能用上面公式的快速幂取模,因为存在精度误差. 然后求前4位的话,就是一个套路公式了. 在上一篇博客.http://ww…
HDU 3117 Fibonacci Numbers(斐波那契前后四位,打表+取对+矩阵高速幂) ACM 题目地址:HDU 3117 Fibonacci Numbers 题意:  求第n个斐波那契数的前四位和后四位.  不足8位直接输出. 分析:  前四位有另外一题HDU 1568,用取对的方法来做的.  后四位能够用矩阵高速幂,MOD设成10000即可了. 代码: /* * Author: illuz <iilluzen[at]gmail.com> * Blog: http://blog.c…
斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5)/2)^n)/√5 假设F[n]可以表示成 t * 10^k(t是一个小数),那么对于F[n]取对数log10,答案就为log10 t + K,此时很明显log10 t<1,于是我们去除整数部分,就得到了log10 t 再用pow(10,log10 t)我们就还原回了t.将t×1000就得到了F[n…
Fibonacci Numbers [题目链接]Fibonacci Numbers [题目类型]矩阵 &题解: 后4位是矩阵快速幂求,前4位是用log加Fibonacci通项公式求,详见上一篇博客 &代码: #include <cstdio> #include <bitset> #include <iostream> #include <set> #include <cmath> #include <cstring>…
链接:传送门 题意:给一个 n ,输出 Fibonacci 数列第 n 项,如果第 n 项的位数 >= 8 位则按照 前4位 + ... + 后4位的格式输出 思路: n < 40时位数不会超过8位,直接打表输出 n >= 40 时,需要解决两个问题 后 4 位可以用矩阵快速幂求出,非常简单 前 4 位的求法借鉴 此博客! balabala:真是涨姿势了-- /****************************************************************…
这道题其实也是水题来的,求Fibonacci数的前4位和后4位,在n==40这里分界开.后4位不难求,因为n达到了10^18的规模,所以只能用矩阵快速幂来求了,但在输出后4位的时候一定要注意前导0的处理(我就是在这里wa了一发,也是看了看别人的代码才发现的). 前4位的话稍微有点难处理,我一开始就在想该怎么处理 log10(f(n)) 呢?把f[n]= f[n-1]+f[n-2]? 不行,log对+运算没法展开,我找了好久也没能找到什么能让f[n]展开成相乘或者幂的形式,上网搜了下题解,才发现别…
Colossal Fibonacci Numbers 想先说下最近的状态吧,已经考完试了,这个暑假也应该是最后刷题的暑假了,打完今年acm就应该会退了,但是还什么都不会呢? +_+ 所以这个暑假,一定要竭尽全力地去刷题,当然,也是能好好刷题的最后时间了. [题目链接]Colossal Fibonacci Numbers [题目类型]数学 &题意: 求Fi(f(a^b)%n) Fi()是斐波那契 &题解: 注意:unsigned时 要把%d全换成%u 数学大法好. 首先你要能看出来这是有循环…
In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 = 1; F2 = 1; Fn = Fn - 1 + Fn - 2 (n > 2). DZY loves Fibonacci numbers very much. Today DZY gives you an array consisting of n integers: a1, a2, ...,…
题目:Fibonacci Numbers 链接:http://acm.hdu.edu.cn/showproblem.php?pid=3117 分析: 1)后四位可以用矩阵快速幂解决.$T= \left[ \begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right] $ 2)前四位:Fibonacci公式:$ans= \frac{1}{\sqrt{5}} * { ( {\frac{1+sqrt{5}}{2}}^n - {\frac{1-\sqrt{…
Interesting Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 665    Accepted Submission(s): 114 Problem Description In mathematics, the Fibonacci numbers are a sequence of numbers named…