利用PCA来简化数据】的更多相关文章

前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 降维技术的用途 使得数据集更易使用: 降低很多算法的计算开销: 去除噪声: 使得结果易懂. 基本概念 降维(dimensionality reduction). 如果样本数据的特征维度很大,会使得难以分析和理解.我们可以通过降维技术减少维度. 降维技术并不是将影响少的特征去掉,而是将样本数据集转换成一个低维度…
第13章 利用 PCA 来简化数据 降维技术 场景 我们正通过电视观看体育比赛,在电视的显示器上有一个球. 显示器大概包含了100万像素点,而球则可能是由较少的像素点组成,例如说一千个像素点. 人们实时的将显示器上的百万像素转换成为一个三维图像,该图像就给出运动场上球的位置. 在这个过程中,人们已经将百万像素点的数据,降至为三维.这个过程就称为降维(dimensionality reduction) 数据显示 并非大规模特征下的唯一难题,对数据进行简化还有如下一系列的原因: 使得数据集更容易使用…
降维技术的好处: 1.使得数据集更易使用 2.降低很多算法的计算开销 3.取出噪声 4.使得结果易懂 在已标注和未标注的数据上都有降维技术,降维的方法: 1.主成分分析(Principal Component Analysis,PCA).在PCA中,数据从原来的坐标系转换到新的坐标系,新坐标系的选择是由数据本身决定的.第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴的选择和第一个坐标轴正交且具有最大方差的方向.该过程中一直重复,重复次数为原始数据中特征的数目.我们会发现,大部分方差…
相关博文: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) 主成分分析(PCA)的推导与解释 主要内容: 一.向量內积的几何意义 二.基的变换 三.协方差矩阵 四.PCA求解 一.向量內积的几何意义 1.假设A.B为二维平面xoy内两个向量,A为(x1, y1),B为(x2, y2),那么A.B的內积为:AB = |A||B|cosΘ = x1*x2 + y1*y2,结果为一个标量. 2.那么A.B內积的几何意义又是什么呢?单从“|A||B|cosΘ”或者“x1*x2 + y1*y…
13.2.2 在NUmpy中实现PCA 将数据转换成前N个主成分的伪代码大致如下: 去除平均值 计算协方差矩阵 计算协方差矩阵的特征值和特征向量 将特征值从大到小排列 保留最上面的N个特征向量 将数据转换到上述的N个特征向量构建的新空间中 在NumPy中实现PCA: #coding:utf-8 from numpy import * def loadDataSet(filename,delim = '\t'): fr = open(filename) stringArr = [line.stri…
一.PCA基础 线性映射(或线性变换),简单的来说就是将高维空间数据投影到低维空间上,那么在数据分析上,我们是将数据的主成分(包含信息量大的维度)保留下来,忽略掉对数据描述不重要的成分.即将主成分维度组成的向量空间作为低维空间,将高维数据投影到这个空间上就完成了降维的工作. 在 PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系的选择是由数据本身决定的.第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴的选择和第一个坐标轴正交且具有最大方差的方向.该过程一直重复,重复次数为原始…
相关博客: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) <机器学习实战>学习笔记第十三章 —— 利用PCA来简化数据 奇异值分解(SVD)原理与在降维中的应用 机器学习(29)之奇异值分解SVD原理与应用详解 主要内容: 一.SVD简介 二.U.∑.VT三个矩阵的求解 三.U.∑.VT三个矩阵的含义 四.SVD用于PCA降维 五.利用SVD优化推荐系统 六.利用SVD进行数据压缩 一.SVD简介 1.SVD分解能够将任意矩阵着矩阵(m*n)分解成三个矩阵U(m*m).Σ(m*…
机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据 关键字:PCA.主成分分析.降维作者:米仓山下时间:2018-11-15机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharrin/machinelearn…
第14章 利用SVD简化数据 SVD 概述 奇异值分解(SVD, Singular Value Decomposition): 提取信息的一种方法,可以把 SVD 看成是从噪声数据中抽取相关特征.从生物信息学到金融学,SVD 是提取信息的强大工具. SVD 场景 信息检索-隐形语义检索(Lstent Semantic Indexing, LSI)或 隐形语义分析(Latent Semantic Analysis, LSA) 隐性语义索引:矩阵 = 文档 + 词语 是最早的 SVD 应用之一,我们…
一. SVD 1. 基本概念: (1)定义:提取信息的方法:奇异值分解Singular Value Decomposition(SVD) (2)优点:简化数据, 去除噪声,提高算法的结果 (3)缺点:数据转换难以想象,耗时,损失特征 (4)适用于:数值型数据 2. 应用: (1)隐性语义索引(LSI/LSA) (2)推荐系统 3. 原理--矩阵分解 将原始的数据集矩阵data(m*n)分解成三个矩阵U(m*n), Sigma(n*m), VT(m*n): 对于Sigma矩阵: 该矩阵只用对角元素…