聚类算法之BIRCH(Java实现)转载】的更多相关文章

http://www.cnblogs.com/zhangchaoyang/articles/2200800.html http://blog.csdn.net/qll125596718/article/details/6895291 BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies)天生就是为处理超大规模(至少要让你的内存容不下)的数据集而设计的,它可以在任何给定的内存下运行.关于BIRCH的更多特点先不介绍,我…
在数据挖掘中聚类和分类的原理被广泛的应用. 聚类即无监督的学习. 分类即有监督的学习. 通俗一点的讲就是:聚类之前是未知样本的分类.而是根据样本本身的相似性进行划分为相似的类簇.而分类 是已知样本分类,则需要将样本特征和分类特征进行匹配,进而将每个样本归入给出的特定的类. 由于本文是对聚类算法中的k-means算法的实现,所以接下来主要进行一些聚类算法的介绍. 聚类算法包括多种,可按如下分配: 1.划分法:基于此种思想的聚类算法包括 k-means,PAM,CLARA,CLARANS,STIRR…
转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/twostep_cluster_algorithm.html 两步聚类算法是在SPSS Modeler中使用的一种聚类算法,是BIRCH层次聚类算法的改进版本.可以应用于混合属性数据集的聚类,同时加入了自动确定最佳簇数量的机制,使得方法更加实用.本文在学习文献[1]和“IBM SPSS Modeler 15 Algorithms Guide”的基础上,融入了自己的理解,更详尽地叙述两步聚类算法的流程和细节.…
在K-Means聚类算法原理中,我们讲到了K-Means和Mini Batch K-Means的聚类原理.这里我们再来看看另外一种常见的聚类算法BIRCH.BIRCH算法比较适合于数据量大,类别数K也比较多的情况.它运行速度很快,只需要单遍扫描数据集就能进行聚类,当然需要用到一些技巧,下面我们就对BIRCH算法做一个总结. 1. BIRCH概述 BIRCH的全称是利用层次方法的平衡迭代规约和聚类(Balanced Iterative Reducing and Clustering Using H…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…
BIRCH:是一种使用树分类的算法,适用的范围是样本数大,特征数小的算法,因为特征数大的话,那么树模型结构就会要复杂很多 DBSCAN:基于概率密度的聚类方法:速度相对较慢,不适用于大型的数据,输入参数有r和k k-means:是通过不断更新聚类中心所进行的一种参数变化,需要输入的参数是需要聚成几类 MEAN-SHIFT:基于核密度估计的漂移算法,使用的是高斯概况密度估计 下面做一个是一个对不同的特征进行特征增强后的准确度的效果 特征增强指的是:对每一样本特征做一个归一化,对归一化后的数据的某个…
2016-07 java简单实现聚类算法 但是有一个小问题,,,,我其实每次迭代之后(就是达不到我的收敛标准之前,聚类中心的误差达不到指定小的时候),虽然重新算了聚类中心,但是其实我的那些点并没有变,可是这个程序不知道咋回事每次都把我原先随机指定的聚类中心给变成了我算的聚类中心,怎么用,按照指示来就行了,不用读文件(源码全都是可以运行的,反正在我这个几几上是木有错误,才往上贴的,有的不足之处还望批评指正)输出的结果有一堆小数的那是新聚类中心和老的的误差值,在没有达到指定小的时候,是不会停的. /…
学习聚类算法时,参考算法说明随手写的java实现,代码很简单,不多做说明啦,有需要的童鞋可以看看,自己也做个备录. http://files.cnblogs.com/files/yuananyun/%E8%81%9A%E7%B1%BB_DBCAN_Kmeans_Java.rar…
转载地址:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般.最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用.看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想. 聚类属于无监督学习,以往的回归.朴素贝叶斯.SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类.而聚类的样本中却没有…
关注我们的公众号哦!获取更多精彩哦! 1.问题导入 假如有这样一种情况,在一天你想去某个城市旅游,这个城市里你想去的有70个地方,现在你只有每一个地方的地址,这个地址列表很长,有70个位置.事先肯定要做好攻略,你要把一些比较接近的地方放在一起组成一组,这样就可以安排交通工具抵达这些组的"某个地址",然后步行到每个组内的地址.那么,如何确定这些组,如何确定这些组的"某个地址"?答案就是聚类.而本文所提供的k-means聚类分析方法就可以用于解决这类问题. 2. k均值…